Suppr超能文献

原代神经元培养物中谷氨酸兴奋性毒性的多组学分析

Multi-Omic Analysis of Glutamate Excitotoxicity in Primary Neuronal Cultures.

作者信息

Nguyen Jennifer H, Zhang Xiaolu, Eby Hunter M, Alganem Khaled, Ryan William G, Lmami Ali Sajid, Lundh Anna E, Madhavaram Anvitha R, Bretz James D, Tackie-Yarboi Ethel, Zajac Kelsee, Messer William S, Schiefer Isaac T, McCullumsmith Robert E

机构信息

Department of Neurosciences and Psychiatry, University of Toledo, Toledo, Ohio, USA.

Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, Ohio, USA.

出版信息

J Neurochem. 2025 Jun;169(6):e70110. doi: 10.1111/jnc.70110.

Abstract

Glutamate excitotoxicity plays a critical role in neurodegeneration by triggering NMDA receptor hyperactivation, leading to elevated synaptic calcium levels and subsequent neuronal death. To better understand how glutamate affects neurons in neurological diseases, we conducted a comprehensive analysis of molecular changes at the transcriptome and kinome levels. We used primary cortical cultures from rat embryos to study glutamate-induced excitotoxicity. Intermediate doses of glutamate (250 μM) produced significant neurotoxic effects, whereas high and low doses resulted in less cell mortality, aligning with previous findings related to calcium influx. Transcriptional analysis identified BTG2, NPAS4, and CCN1 as the most significantly differentially expressed genes following 250 μM glutamate treatment in neurons. Dkk2, a Wnt antagonist, exhibited the highest log fold change among the significantly differentially expressed genes. Gene set enrichment analysis identified 1127 significant pathways. Perturbagen analysis revealed 2811 unique concordant signatures and 1071 unique discordant signatures. Kinome array profiling indicated activation of PKA and PKG kinases, which regulate signaling pathways essential for synaptic plasticity-related gene expression. Multi-omic integration of transcriptome and kinome data revealed enrichment of response to oxidative stress, actin filament organization, and regulation of apoptotic processes pathways. The Wnt signaling pathway emerged as a pivotal factor in the early stages of axon differentiation and growth, as well as in shaping axonal behavior and dendrite development. Moreover, the interplay between MAPK and Wnt signaling pathways likely impacts cellular differentiation processes. Our findings highlight a prominent role for p38/MAPK and stress-activated MAPK pathways, with specific activation of the MAPK/ERK signaling pathway in response to excitotoxic neuronal damage in vitro. In conclusion, glutamate excitotoxicity induces molecular changes at the transcriptome and kinome levels that include elements of the MAPK and WNT biological pathways.

摘要

谷氨酸兴奋性毒性通过触发NMDA受体过度激活在神经退行性变中起关键作用,导致突触钙水平升高并随后引起神经元死亡。为了更好地理解谷氨酸在神经疾病中如何影响神经元,我们在转录组和激酶组水平上对分子变化进行了全面分析。我们使用大鼠胚胎的原代皮质培养物来研究谷氨酸诱导的兴奋性毒性。中等剂量的谷氨酸(250μM)产生了显著的神经毒性作用,而高剂量和低剂量导致的细胞死亡率较低,这与先前关于钙内流的研究结果一致。转录分析确定BTG2、NPAS4和CCN1是神经元在250μM谷氨酸处理后差异表达最显著的基因。Dkk2作为一种Wnt拮抗剂,在差异表达显著的基因中表现出最高的对数倍数变化。基因集富集分析确定了1127条显著的通路。干扰因子分析揭示了2811个独特的一致特征和1071个独特的不一致特征。激酶组阵列分析表明PKA和PKG激酶被激活,它们调节与突触可塑性相关基因表达所必需的信号通路。转录组和激酶组数据的多组学整合揭示了对氧化应激、肌动蛋白丝组织和凋亡过程调控通路反应的富集。Wnt信号通路在轴突分化和生长的早期阶段以及塑造轴突行为和树突发育方面成为一个关键因素。此外,MAPK和Wnt信号通路之间的相互作用可能影响细胞分化过程。我们的研究结果突出了p38/MAPK和应激激活的MAPK通路的重要作用,以及体外对兴奋性毒性神经元损伤反应中MAPK/ERK信号通路的特异性激活。总之,谷氨酸兴奋性毒性在转录组和激酶组水平上诱导分子变化,这些变化包括MAPK和WNT生物学通路的元素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53c1/12142573/06146d194e42/JNC-169-0-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验