Wu Xinyue, Zhang Yiyun, Xing Peipei, Zhu Mengliang
Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
J Mater Chem B. 2025 Jul 2;13(26):7653-7667. doi: 10.1039/d5tb00877h.
Nanozymes, as synthetic nanomaterials that catalyze the conversion of enzyme substrates to products and follow enzymatic kinetics, have emerged as powerful agents for combating oxidative stress-related diseases by scavenging reactive oxygen species (ROS). In recent years, constructing multifunctional integrated systems by integrating nanozymes with therapeutic drugs or endowing them with efficient delivery capabilities through surface functionalization strategies has become one of the cutting-edge directions. This review explores recent progress in three key surface modification approaches-chemical conjugation, physical encapsulation, and drug loading-that collectively enable synergistic therapeutic effects, precise targeting, and effective penetration of biological barriers. Chemical conjugation allows for the direct attachment of molecules to nanozyme surfaces, enhancing synergistic efficacy and targeting specificity. Physical encapsulation using mesoporous structures, hydrogels, or microneedles improves nanozyme stability, extends retention, and facilitates controlled release. Drug-loading strategies further expand the therapeutic potential by enabling co-delivery of antioxidants and other functional agents to complex pathological environments. Despite these promising advancements, challenges remain in elucidating the fundamental catalytic mechanisms of nanozymes, ensuring long-term biocompatibility, and achieving scalable clinical translation. Future efforts should focus on developing dynamically responsive systems, achieving precision catalysis, and fostering interdisciplinary integration to accelerate the evolution of nanozyme-based therapeutics. This review systematically summarizes the modification strategies from a surface perspective, offering insights for constructing multifunctional systems.
纳米酶作为一类能够催化酶底物转化为产物并遵循酶促动力学的合成纳米材料,已成为通过清除活性氧(ROS)来对抗氧化应激相关疾病的有力手段。近年来,通过将纳米酶与治疗药物整合构建多功能集成系统,或通过表面功能化策略赋予其高效递送能力,已成为前沿研究方向之一。本综述探讨了三种关键表面修饰方法——化学偶联、物理包裹和药物负载——的最新进展,这些方法共同实现了协同治疗效果、精准靶向以及有效穿透生物屏障。化学偶联可使分子直接附着于纳米酶表面,增强协同疗效和靶向特异性。使用介孔结构、水凝胶或微针进行物理包裹可提高纳米酶稳定性、延长保留时间并促进控释。药物负载策略通过将抗氧化剂和其他功能剂共同递送至复杂的病理环境,进一步拓展了治疗潜力。尽管取得了这些令人鼓舞的进展,但在阐明纳米酶的基本催化机制、确保长期生物相容性以及实现可扩展的临床转化方面仍存在挑战。未来的研究应聚焦于开发动态响应系统、实现精准催化以及促进跨学科整合,以加速基于纳米酶的治疗方法的发展。本综述从表面角度系统总结了修饰策略,为构建多功能系统提供了见解。
Nanomedicine (Lond). 2025-7
J Health Organ Manag. 2025-6-30
Neural Regen Res. 2025-6-19
Arch Ital Urol Androl. 2025-6-30
Cochrane Database Syst Rev. 2021-4-19
Cochrane Database Syst Rev. 2020-1-9
Nanomedicine (Lond). 2025-6-18
Acc Chem Res. 2025-7-1
Antioxidants (Basel). 2025-8-8