Suppr超能文献

通过碱基分布控制DNA-RNA链置换动力学

Controlling DNA-RNA strand displacement kinetics with base distribution.

作者信息

Ratajczyk Eryk J, Bath Jonathan, Šulc Petr, Doye Jonathan P K, Louis Ard A, Turberfield Andrew J

机构信息

Department of Physics, Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom.

Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2025 Jun 10;122(23):e2416988122. doi: 10.1073/pnas.2416988122. Epub 2025 Jun 6.

Abstract

DNA-RNA hybrid strand displacement underpins the function of many natural and engineered systems. Understanding and controlling factors affecting DNA-RNA strand displacement reactions is necessary to enable control of processes such as CRISPR-Cas9 gene editing. By combining multiscale modeling with strand displacement experiments, we show that the distribution of bases within the displacement domain has a very strong effect on reaction kinetics, a feature unique to DNA-RNA hybrid strand displacement. Merely by redistributing bases within a displacement domain of fixed base composition, we are able to design sequences whose reaction rates span more than four orders of magnitude. We extensively characterize this effect in reactions involving the invasion of dsDNA by an RNA strand, as well as the invasion of a hybrid duplex by a DNA strand. In all-DNA strand displacement reactions, we find a predictable but relatively weak sequence dependence, confirming that DNA-RNA strand displacement permits far more thermodynamic and kinetic control than its all-DNA counterpart. We show that oxNA, a recently introduced coarse-grained model of DNA-RNA hybrids, can reproduce trends in experimentally observed reaction rates. We also develop a simple kinetic model for predicting strand displacement rates. On the basis of these results, we argue that base distribution effects may play an important role in natural R-loop formation and in the function of the guide RNAs that direct CRISPR-Cas systems.

摘要

DNA-RNA杂交链置换是许多自然和工程系统功能的基础。理解和控制影响DNA-RNA链置换反应的因素对于控制诸如CRISPR-Cas9基因编辑等过程至关重要。通过将多尺度建模与链置换实验相结合,我们表明置换结构域内碱基的分布对反应动力学有非常强烈的影响,这是DNA-RNA杂交链置换所特有的特征。仅仅通过在固定碱基组成的置换结构域内重新分布碱基,我们就能设计出反应速率跨越四个以上数量级的序列。我们在涉及RNA链侵入双链DNA以及DNA链侵入杂交双链体的反应中广泛地表征了这种效应。在全DNA链置换反应中,我们发现了一种可预测但相对较弱的序列依赖性,证实了DNA-RNA链置换比其全DNA对应物允许更多的热力学和动力学控制。我们表明,oxNA,一种最近引入的DNA-RNA杂交体的粗粒度模型,可以重现实验观察到的反应速率趋势。我们还开发了一个简单的动力学模型来预测链置换速率。基于这些结果,我们认为碱基分布效应可能在天然R环形成以及指导CRISPR-Cas系统的引导RNA的功能中起重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d293/12167940/21dadeff7e03/pnas.2416988122fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验