Suppr超能文献

PhenoDP:利用深度学习进行基于表型的病例报告、疾病排名和症状推荐。

PhenoDP: leveraging deep learning for phenotype-based case reporting, disease ranking, and symptom recommendation.

作者信息

Wen Baole, Shi Sheng, Long Yi, Dang Yanan, Tian Weidong

机构信息

State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Computational Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.

School of Medicine, Nankai University, Tianjin, 300071, China.

出版信息

Genome Med. 2025 Jun 6;17(1):67. doi: 10.1186/s13073-025-01496-8.

Abstract

BACKGROUND

Current phenotype-based diagnostic tools often struggle with accurate disease prioritization due to incomplete phenotypic data and the complexity of rare disease presentations. Additionally, they lack the ability to generate patient-centered clinical insights or recommend further symptoms for differential diagnosis.

METHODS

We developed PhenoDP, a deep learning-based toolkit with three modules: Summarizer, Ranker, and Recommender. The Summarizer fine-tuned a distilled large language model to create clinical summaries from a patient's Human Phenotype Ontology (HPO) terms. The Ranker prioritizes diseases by combining information content-based, phi-based, and semantic-based similarity measures. The Recommender employs contrastive learning to recommend additional HPO terms for enhanced diagnostic accuracy.

RESULTS

PhenoDP's Summarizer produces more clinically coherent and patient-centered summaries than the general-purpose language model FlanT5. The Ranker achieves state-of-the-art diagnostic performance, consistently outperforming existing phenotype-based methods across both simulated and real-world datasets. The Recommender also outperformed GPT-4o and PhenoTips in improving diagnostic accuracy when its suggested terms were incorporated into different ranking pipelines.

CONCLUSIONS

PhenoDP enhances Mendelian disease diagnosis through deep learning, offering precise summarization, ranking, and symptom recommendation. Its superior performance and open-source design make it a valuable clinical tool, with potential to accelerate diagnosis and improve patient outcomes. PhenoDP is freely available at https://github.com/TianLab-Bioinfo/PhenoDP .

摘要

背景

由于表型数据不完整以及罕见病表现的复杂性,当前基于表型的诊断工具在准确进行疾病优先级排序方面常常面临困难。此外,它们缺乏生成以患者为中心的临床见解或推荐进一步症状以进行鉴别诊断的能力。

方法

我们开发了PhenoDP,这是一个基于深度学习的工具包,具有三个模块:总结器、排序器和推荐器。总结器对一个提炼的大语言模型进行微调,以根据患者的人类表型本体(HPO)术语创建临床总结。排序器通过结合基于信息内容、基于phi和基于语义的相似性度量来对疾病进行优先级排序。推荐器采用对比学习来推荐额外的HPO术语,以提高诊断准确性。

结果

与通用语言模型FlanT5相比,PhenoDP的总结器生成的临床总结更连贯且以患者为中心。排序器实现了先进的诊断性能,在模拟和真实世界数据集上始终优于现有的基于表型的方法。当将推荐器建议的术语纳入不同的排序流程时,其在提高诊断准确性方面也优于GPT-4o和PhenoTips。

结论

PhenoDP通过深度学习增强了孟德尔疾病的诊断,提供了精确的总结、排序和症状推荐。其卓越的性能和开源设计使其成为一个有价值的临床工具,有可能加速诊断并改善患者预后。PhenoDP可在https://github.com/TianLab-Bioinfo/PhenoDP上免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06e3/12143081/4b5f38461ba8/13073_2025_1496_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验