La Cognata Valentina, Guarnaccia Maria, Morello Giovanna, Gentile Giulia, Cavallaro Sebastiano
Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), via P. Gaifami 18, 95126 Catania, Italy.
Exp Neurol. 2025 Oct;392:115329. doi: 10.1016/j.expneurol.2025.115329. Epub 2025 Jun 6.
Amyotrophic lateral sclerosis (ALS) is a fast-paced fatal disease that requires immediate intervention to slow down the course of pathology and improve patients' quality of life. However, in most cases, ALS is diagnosed too late. For this reason, an accurate diagnostic test is urgently needed to identify ALS patients early, enabling a timely introduction of novel therapeutics and effective monitoring of disease progression. To address this significant unmet medical need, we explored a transcriptome-based signature to predict ALS during the preclinical phase. Using publicly available gene expression profiles from central nervous system (lumbar isolated motor neurons and spinal cord homogenates) of transgenic SOD1G93A mice with different genetic background and their respective control littermates, covering pre-symptomatic to late stages of the disease, we identified 463 differentially expressed genes (DEGs), primarily involved in immune response and metabolic processes. Based on this ALS gene-associated signature, we tested three machine learning binary classifiers (Support Vector Machine, Neural Network and Linear Discriminant Analysis), which demonstrated highly significant predictive power in discriminating mutant SOD1G93A from controls mice, even at pre-symptomatic stages. This was evident in both the discovery cohort and in two additional peripheral cross-tissue validation datasets from preclinical SOD1G93A sciatic nerve and muscles. Our study provides the first proof of concept for early ALS detection using a machine learning-based transcriptomic classifier. This could lead to earlier diagnosis, potentially enabling effective monitoring of disease progression and earlier interventions.
肌萎缩侧索硬化症(ALS)是一种进展迅速的致命疾病,需要立即进行干预以减缓病理进程并提高患者的生活质量。然而,在大多数情况下,ALS的诊断为时已晚。因此,迫切需要一种准确的诊断测试来早期识别ALS患者,以便及时引入新的治疗方法并有效监测疾病进展。为了满足这一重大的未满足医疗需求,我们探索了一种基于转录组的特征来预测临床前阶段的ALS。利用来自具有不同遗传背景的转基因SOD1G93A小鼠及其各自对照同窝小鼠的中枢神经系统(腰椎分离的运动神经元和脊髓匀浆)的公开可用基因表达谱,涵盖疾病的症状前到晚期阶段,我们鉴定了463个差异表达基因(DEG),主要参与免疫反应和代谢过程。基于这种与ALS基因相关的特征,我们测试了三种机器学习二分类器(支持向量机、神经网络和线性判别分析),即使在症状前阶段,它们在区分突变型SOD1G93A小鼠和对照小鼠方面也表现出高度显著的预测能力。这在发现队列以及来自临床前SOD1G93A坐骨神经和肌肉的另外两个外周跨组织验证数据集中都很明显。我们的研究为使用基于机器学习的转录组分类器进行早期ALS检测提供了首个概念验证。这可能导致更早的诊断,有可能实现对疾病进展的有效监测和更早的干预。