具有增强成骨和血管生成作用的可生物降解锌 - x钇合金用于骨植入应用。

Biodegradable Zn-xY alloys with enhanced osteogenesis and angiogenesis effects for bone implant applications.

作者信息

Liang Shimin, Du Shaokang, Zheng Yufeng, Xia Dandan, Zhou Yongsheng

机构信息

Department of Prosthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing 100081, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China.

School of Materials Science and Engineering, Peking University, Beijing 100871, China.

出版信息

Acta Biomater. 2025 Jul 1;201:684-702. doi: 10.1016/j.actbio.2025.05.048. Epub 2025 Jun 5.

Abstract

Biodegradable zinc-based alloys have gained significant attention in the biomedical field due to their favorable degradability, but challenges remain in enhancing their mechanical properties and biocompatibility. As promising candidates for bone implant materials, improving osteogenic differentiation, angiogenesis and antibacterial properties is crucial. In this study, Zinc-xYttrium (Zn-xY, x = 0.1, 0.6, 1.0 and 2.0 at.%) alloys were developed, and their mechanical properties, degradation behavior, cytocompatibility, osteogenic activity, angiogenic potential and antibacterial properties were systematically evaluated. Specifically, Zn-2.0Y exhibited the highest mechanical strength, with a tensile strength (UTS) of 230 MPa, yield strength (YS) of 170 MPa, and elongation at break (ER) of approximately 16%. In terms of degradation, Zn-2.0Y demonstrated the slowest degradation rate. Additionally, this alloy significantly enhanced osteogenic differentiation and mineralization of human bone marrow-derived mesenchymal stem cells (hBMSCs) and promoted migration and angiogenic activity in human umbilical vein endothelial cells (HUVECs). Moreover, this alloy demonstrated far better antibacterial properties than pure Zn. In vivo rat femoral implantation studies further confirmed that Zn-2.0Y promoted bone integration. Moreover, the study revealed and validated that Zn-2.0Y enhances osteogenic and angiogenic activities through the PI3K/AKT signaling pathway. These findings highlight Zn-2.0Y as a promising biodegradable material for bone implant applications. STATEMENT OF SIGNIFICANCE: The development of advanced biodegradable bone implant materials is crucial for addressing complex challenges in bone repair. This study investigates Zinc-xYttrium (Zn-xY, x = 0.1, 0.6, 1.0 and 2.0 at.%) alloys, focusing on Zn-2.0Y, which exhibits tensile strength >230 MPa, yield strength ∼170 MPa, and elongation at break ∼16%. The degradation rate of Zn-xY alloys decreases with increasing Y content, with Zn-2.0Y showing the lowest rate of 45 µm/y. In vitro and in vivo studies demonstrate that Zn-2.0Y promotes osteogenesis and angiogenesis by activating the PI3K/AKT signaling pathway. These findings highlight Zn-2.0Y as a promising biodegradable material for bone repair.

摘要

由于具有良好的降解性,可生物降解的锌基合金在生物医学领域受到了广泛关注,但在提高其力学性能和生物相容性方面仍面临挑战。作为骨植入材料的有潜力候选者,改善成骨分化、血管生成和抗菌性能至关重要。在本研究中,制备了锌钇合金(Zn-xY,x = 0.1、0.6、1.0和2.0原子百分比),并系统评估了它们的力学性能、降解行为、细胞相容性、成骨活性、血管生成潜力和抗菌性能。具体而言,Zn-2.0Y表现出最高的机械强度,其抗拉强度(UTS)为230 MPa,屈服强度(YS)为170 MPa,断裂伸长率(ER)约为16%。在降解方面,Zn-2.0Y的降解速率最慢。此外,该合金显著增强了人骨髓间充质干细胞(hBMSCs)的成骨分化和矿化,并促进了人脐静脉内皮细胞(HUVECs)的迁移和血管生成活性。此外,该合金的抗菌性能远优于纯锌。体内大鼠股骨植入研究进一步证实,Zn-2.0Y促进了骨整合。此外,该研究揭示并验证了Zn-2.0Y通过PI3K/AKT信号通路增强成骨和血管生成活性。这些发现突出了Zn-2.0Y作为一种有潜力的用于骨植入应用的可生物降解材料。

重要意义声明

先进的可生物降解骨植入材料的开发对于应对骨修复中的复杂挑战至关重要。本研究调查了锌钇合金(Zn-xY,x = 0.1、0.6、1.0和2.0原子百分比),重点关注Zn-2.0Y,其抗拉强度>230 MPa,屈服强度约为170 MPa,断裂伸长率约为16%。Zn-xY合金的降解速率随Y含量的增加而降低,Zn-2.0Y的降解速率最低,为45 µm/年。体外和体内研究表明,Zn-2.0Y通过激活PI3K/AKT信号通路促进成骨和血管生成。这些发现突出了Zn-2.0Y作为一种有潜力的用于骨修复的可生物降解材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索