Johansson Camilla, Schrama Esther J, Kotol David, Hober Andreas, Koeks Zaïda, van de Velde Nienke M, Verschuuren Jan J G M, Niks Erik H, Edfors Fredrik, Spitali Pietro, Al-Khalili Szigyarto Cristina
Department of Protein Science, School of Chemistry, Biology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
Skelet Muscle. 2025 Jun 7;15(1):15. doi: 10.1186/s13395-025-00385-3.
Becker muscular dystrophy (BMD) is a rare and heterogeneous form of dystrophinopathy caused by expression of altered dystrophin proteins, as a consequence of in-frame genetic mutations. The majority of the BMD biomarker studies employ targeted approaches and focus on translating findings from Duchenne Muscular Dystrophy (DMD), a more severe disease form with clinical similarities but caused by out-of-frame mutations in the dystrophin gene. Importantly, DMD therapies assume that disease progression can be slowed by promoting the expression of truncated dystrophin comparable to what occurs in BMD patients. In this study, we explore similarities and differences in protein trajectories over time between BMD and DMD serum, and explore proteins related to motor function performance.
Serum samples collected from 34 BMD patients, in a prospective longitudinal 3-year study, and 19 DMD patients, were analyzed by using Data Independent Acquisition Tandem Mass Spectrometry (DIA-MS). Subsequent normalization, linear mixed effects model was employed to identify proteins associated with physical tests and dystrophin expression in skeletal muscle. Analysis was also performed to explore the discrepancy between DMD and BMD biomarker abundance trajectories over time.
Linear mixed effects models identified 20 proteins with altered longitudinal signatures between DMD and BMD, including creatine kinase M-type (CKM) pyruvate kinase (PKM), fibrinogen gamma chain (FGG), lactate dehydrogenase B (LDHB) and alpha-2-macroglobulin (A2M). Furthermore, several proteins related to innate immune response were associated with motor function in BMD patients. In particular, A2M displayed an altered time-dependent decline in relation to dystrophin expression in the tibialis anterior muscle.
Our study revealed differences in the serum proteome between BMD and DMD, which comprises proteins involved in the immune response, extracellular matrix organization and hemostasis but not muscle leakage proteins significantly associated with disease progression in DMD. If further evaluated and validated, these biomarker candidates may offer means to monitor disease progression in BMD patients. A2M is of particular interest due to its association with dystrophin expression in BMD muscle and higher abundance in DMD patients in comparison to BMD. If validated, A2M could be used as a pharmacodynamic biomarker in therapeutic clinical trials aiming to restore dystrophin expression.
贝克尔肌营养不良症(BMD)是一种罕见的、异质性的肌营养不良症,由框内基因突变导致肌营养不良蛋白表达改变引起。大多数BMD生物标志物研究采用靶向方法,并专注于将杜兴氏肌营养不良症(DMD)的研究结果进行转化。DMD是一种更严重的疾病形式,与BMD在临床上有相似之处,但由肌营养不良蛋白基因的框外突变引起。重要的是,DMD治疗方法假定通过促进截短的肌营养不良蛋白的表达可以减缓疾病进展,这与BMD患者体内发生的情况类似。在本研究中,我们探讨了BMD和DMD血清中蛋白质随时间变化的轨迹的异同,并探索了与运动功能表现相关的蛋白质。
在一项为期3年的前瞻性纵向研究中,收集了34例BMD患者和19例DMD患者的血清样本,采用数据非依赖采集串联质谱(DIA-MS)进行分析。随后进行归一化处理,采用线性混合效应模型来识别与体格检查和骨骼肌中肌营养不良蛋白表达相关的蛋白质。还进行了分析以探讨DMD和BMD生物标志物丰度随时间变化的轨迹之间的差异。
线性混合效应模型确定了20种在DMD和BMD之间纵向特征发生改变的蛋白质,包括肌酸激酶M型(CKM)、丙酮酸激酶(PKM)、纤维蛋白原γ链(FGG)、乳酸脱氢酶B(LDHB)和α-2-巨球蛋白(A2M)。此外,一些与先天免疫反应相关的蛋白质与BMD患者的运动功能有关。特别是,A2M在胫前肌中与肌营养不良蛋白表达相关的时间依赖性下降发生了改变。
我们的研究揭示了BMD和DMD血清蛋白质组的差异,其中包括参与免疫反应、细胞外基质组织和止血的蛋白质,但不包括与DMD疾病进展显著相关的肌肉渗漏蛋白。如果进一步评估和验证,这些候选生物标志物可能为监测BMD患者的疾病进展提供方法。A2M特别受关注,因为它与BMD肌肉中的肌营养不良蛋白表达相关,并且与BMD相比,在DMD患者中的丰度更高。如果得到验证,A2M可作为旨在恢复肌营养不良蛋白表达的治疗性临床试验中的药效学生物标志物。