Suppr超能文献

尿Twist1甲基化和VI-RADS评分对非肌层浸润性膀胱癌患者膀胱肿瘤再次经尿道切除术前残留肿瘤的预测价值

The Predictive Value of Urinary Twist1 Methylation and VI-RADS Score for Residual Tumor before Repeat Transurethral Resection of Bladder Tumor in NMIBC Patients.

作者信息

Wang Qi, Lin Qisheng, Li Linfeng, Wei Weiyang, Yang Hao, Huang Yaqiang

机构信息

Department of Urology, Zhongshan City People's Hospital, Zhongshan, China,

Department of Urology, Zhongshan City People's Hospital, Zhongshan, China.

出版信息

Urol Int. 2025 Jun 6:1-11. doi: 10.1159/000546718.

Abstract

INTRODUCTION

Although cystoscopy is highly accurate in managing bladder cancer, its invasive nature and high cost underscore the need for more practical, noninvasive alternatives. Urinary Twist Family BHLH Transcription Factor 1 (Twist1) methylation, an emerging biomarker, shows great promise for early diagnosis and postsurgical monitoring. Meanwhile, the Vesical Imaging-Reporting and Data System (VI-RADS), which incorporates multiple sequences of multiparametric MRI, demonstrates excellent diagnostic performance for bladder cancer. These tools could potentially overcome the limitations in managing non-muscle invasive bladder cancer (NMIBC), particularly in predicting residual tumor burden before repeat transurethral resection of bladder tumor (re-TURBT). This study aims to evaluate a predictive model that combines VI-RADS, urinary Twist1 methylation, and hematuria to guide clinical decision-making in NMIBC management.

METHODS

A prospective cohort study was conducted, including NMIBC patients who underwent re-TURBT at the Department of Urology, Zhongshan city People's Hospital, from June 2022 to May 2024. Morning urine samples were collected prior to re-TURBT to detect urinary Twist1 methylation, and a 3.0T MRI scan of the bladder was performed for VI-RADS scoring. Based on postoperative pathology results, patients were divided into residual tumor and non-residual tumor groups. Binary logistic regression was employed to identify independent predictors of residual tumor burden prior to re-TURBT. Two predictive models were subsequently developed. The diagnostic performance and clinical utility of these models were assessed using the receiver operating characteristic (ROC) curve and decision curve analysis (DCA).

RESULTS

The study ultimately included 52 patients who were initially diagnosed with NMIBC based on pathology. According to the pathological results after re-TURBT, the patients were divided into two groups: the tumor residue group (n = 22) and the control group (n = 30). Binary logistic regression analysis identified the VI-RADS score and urinary Twist1 methylation as independent predictors of residual tumor burden in NMIBC patients prior to re-TURBT. A predictive model incorporating these factors, along with the presence of visible hematuria within 1 week before re-TURBT, achieved a sensitivity of 95.45% and a specificity of 83.33% for diagnosing residual tumor burden. ROC curve analysis demonstrated an area under the curve (AUC) of 0.950 (95% CI: 0.884-1.000, p < 0.001). DCA revealed that the model provided a net benefit for threshold probabilities ranging from 0.10 to 0.92.

CONCLUSION

The predictive model combining VI-RADS score, urinary Twist1 methylation, and visible hematuria exhibits excellent diagnostic performance for predicting residual tumor burden in NMIBC patients, offering significant guidance for clinical practice.

摘要

引言

尽管膀胱镜检查在膀胱癌管理中具有高度准确性,但其侵入性和高成本凸显了对更实用、非侵入性替代方法的需求。尿 Twist 家族 BHLH 转录因子 1(Twist1)甲基化作为一种新兴生物标志物,在早期诊断和术后监测方面显示出巨大潜力。同时,结合多参数 MRI 多个序列的膀胱影像报告和数据系统(VI-RADS)在膀胱癌诊断中表现出卓越性能。这些工具可能克服非肌层浸润性膀胱癌(NMIBC)管理中的局限性,特别是在预测膀胱肿瘤再次经尿道电切术(re-TURBT)前的残余肿瘤负荷方面。本研究旨在评估一种结合 VI-RADS、尿 Twist1 甲基化和血尿的预测模型,以指导 NMIBC 管理中的临床决策。

方法

进行了一项前瞻性队列研究,纳入 2022 年 6 月至 2024 年 5 月在中山市人民医院泌尿外科接受 re-TURBT 的 NMIBC 患者。在 re-TURBT 前收集晨尿样本以检测尿 Twist1 甲基化,并对膀胱进行 3.0T MRI 扫描以进行 VI-RADS 评分。根据术后病理结果,将患者分为残余肿瘤组和无残余肿瘤组。采用二元逻辑回归确定 re-TURBT 前残余肿瘤负荷的独立预测因素。随后开发了两个预测模型。使用受试者工作特征(ROC)曲线和决策曲线分析(DCA)评估这些模型的诊断性能和临床实用性。

结果

该研究最终纳入 52 例最初根据病理诊断为 NMIBC 的患者。根据 re-TURBT 后的病理结果,将患者分为两组:肿瘤残留组(n = 22)和对照组(n = 30)。二元逻辑回归分析确定 VI-RADS 评分和尿 Twist1 甲基化是 NMIBC 患者 re-TURBT 前残余肿瘤负荷的独立预测因素。结合这些因素以及 re-TURBT 前 1 周内肉眼血尿情况的预测模型在诊断残余肿瘤负荷方面的敏感性为 95.45%,特异性为 83.33%。ROC 曲线分析显示曲线下面积(AUC)为 0.950(95%CI:0.884 - 1.000,p < 0.001)。DCA 显示该模型在阈值概率为 0.10 至 0.92 范围内提供了净效益。

结论

结合 VI-RADS 评分、尿 Twist1 甲基化和肉眼血尿的预测模型在预测 NMIBC 患者残余肿瘤负荷方面表现出卓越的诊断性能,为临床实践提供了重要指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验