文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

整合增强CT环境影像组学和临床病理特征的可解释机器学习模型用于预测肺腺癌术后复发:一项回顾性初步研究

Interpretable machine learning model integrating contrast-enhanced CT environmental radiomics and clinicopathological features for predicting postoperative recurrence in lung adenocarcinoma: a retrospective pilot study.

作者信息

Lin Song, Niu Yanli, Song Lina, Ye Yingjian, Yang Jinfang, Liu Junjie, Zhou Xin, An Peng

机构信息

Department of Radiology and Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China.

Department of Medical Cosmetology, Anesthesiology, Oncology, and Epidemiology, Xiangyang Key Laboratory of Maternal-fetal Medicine on Fetal Congenital Heart Disease, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Hubei, People's Republic of China (P.R.C), Xiangyang, Hubei, China.

出版信息

Front Oncol. 2025 May 23;15:1601674. doi: 10.3389/fonc.2025.1601674. eCollection 2025.


DOI:10.3389/fonc.2025.1601674
PMID:40485732
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12141000/
Abstract

PURPOSE: This study aims to develop an interpretable predictive model combining contrast-enhanced CT (CECT) radiomics features with clinicopathological parameters to assess 3-year recurrence risk after surgery for lung adenocarcinoma (LA). METHODS: A retrospective cohort of 350 LA patients (126 recurrence, 224 non-recurrence) from Xiangyang NO.1 People's Hospital (2016-2023) was included. Radiomics features were extracted from arterial and venous phase CECT images using 3D Slicer's Radiomics plugin. Features with intraclass correlation coefficient (ICC > 0.75) were selected, followed by LASSO regression with cross-validation to generate radiomics scores (Radscore3 for intratumoral and Radscore4 for peritumoral regions). Clinical variables (sex, heterogeneous enhancement, pleural invasion, Ki67) were integrated via chi-square/t-test analysis. Ten machine learning algorithms (e.g., XGBoost, CatBoost, Random Forest) were trained on a stratified 7:3 split (training: n=245; testing: n=105) with five-fold cross-validation. Model performance was evaluated using ROC curves (AUC), calibration curves, decision curve analysis (DCA), and a nomogram. RESULTS: Univariate analysis identified sex (OR=1.66, p=0.02), heterogeneous enhancement (OR=4.32, p<0.05), visceral pleural invasion (OR=4.75, p<0.05), Radscore3 (OR=356.17, p<0.05), Radscore4 (OR=1529.16, p<0.05), and Ki67 (OR=1.09, p=0.01) as significant predictors. Among machine learning models, CatBoost achieved superior performance (AUC=0.883, 95% CI:0.811-0.955) compared to logistic regression (AUC=0.877, 95% CI:0.804-0.949) in test set. Calibration curves demonstrated high consistency between predicted and observed recurrence risks, while DCA indicated clinical utility at threshold probabilities >0.17. SHAP analysis highlighted heterogeneous enhancement, visceral pleural invasion, Radscore3/4, and Ki67 as key contributors. The nomogram integrated these factors, enhancing model interpretability and clinical applicability. CONCLUSION: The CatBoost model integrating CECT environmental radiomics and clinicopathological parameters effectively predicts postoperative LA recurrence, supporting personalized adjuvant therapy decisions. Its interpretable framework emphasizes tumor heterogeneity (Radscore3/4) as a critical prognostic biomarker, providing mechanistic insights into LA recurrence.

摘要

目的:本研究旨在开发一种可解释的预测模型,该模型将对比增强CT(CECT)影像组学特征与临床病理参数相结合,以评估肺腺癌(LA)手术后3年的复发风险。 方法:纳入了襄阳市第一人民医院(2016 - 2023年)的350例LA患者的回顾性队列(126例复发,224例未复发)。使用3D Slicer的影像组学插件从动脉期和静脉期CECT图像中提取影像组学特征。选择组内相关系数(ICC > 0.75)的特征,随后进行带交叉验证的LASSO回归以生成影像组学评分(瘤内为Radscore3,瘤周区域为Radscore4)。通过卡方检验/t检验分析整合临床变量(性别、不均匀强化、胸膜侵犯、Ki67)。在分层的7:3分割(训练:n = 245;测试:n = 105)上使用五折交叉验证训练十种机器学习算法(例如,XGBoost、CatBoost、随机森林)。使用ROC曲线(AUC)、校准曲线、决策曲线分析(DCA)和列线图评估模型性能。 结果:单因素分析确定性别(OR = 1.66,p = 0.02)、不均匀强化(OR = 4.32,p < 0.05)﹑脏层胸膜侵犯(OR = 4.75,p < 0.05)、Radscore3(OR = 356.17,p < 0.05)、Radscore4(OR = 1529.16,p < 0.05)和Ki67(OR = 1.09,p = 0.01)为显著预测因素。在机器学习模型中,与逻辑回归(AUC = 0.877,95% CI:0.804 - 0.949)相比,CatBoost在测试集中表现出更优的性能(AUC = 0.883,95% CI:0.811 - 0.955)。校准曲线显示预测的和观察到的复发风险之间具有高度一致性,而DCA表明在阈值概率>0.17时具有临床实用性。SHAP分析突出了不均匀强化、脏层胸膜侵犯、Radscore3/4和Ki67是关键因素。列线图整合了这些因素,增强了模型的可解释性和临床适用性。 结论:整合CECT环境影像组学和临床病理参数的CatBoost模型有效地预测了LA术后复发,支持个性化辅助治疗决策。其可解释框架强调肿瘤异质性(Radscore3/4)作为关键的预后生物标志物,为LA复发提供了机制性见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afe4/12141000/5ae962e0944e/fonc-15-1601674-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afe4/12141000/981343e5939a/fonc-15-1601674-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afe4/12141000/2a8d3c2e1b3a/fonc-15-1601674-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afe4/12141000/ab1ca9063609/fonc-15-1601674-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afe4/12141000/44b348b34cec/fonc-15-1601674-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afe4/12141000/27a260d0dd15/fonc-15-1601674-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afe4/12141000/a4a0b095eb61/fonc-15-1601674-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afe4/12141000/5ae962e0944e/fonc-15-1601674-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afe4/12141000/981343e5939a/fonc-15-1601674-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afe4/12141000/2a8d3c2e1b3a/fonc-15-1601674-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afe4/12141000/ab1ca9063609/fonc-15-1601674-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afe4/12141000/44b348b34cec/fonc-15-1601674-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afe4/12141000/27a260d0dd15/fonc-15-1601674-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afe4/12141000/a4a0b095eb61/fonc-15-1601674-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afe4/12141000/5ae962e0944e/fonc-15-1601674-g007.jpg

相似文献

[1]
Interpretable machine learning model integrating contrast-enhanced CT environmental radiomics and clinicopathological features for predicting postoperative recurrence in lung adenocarcinoma: a retrospective pilot study.

Front Oncol. 2025-5-23

[2]
Predicting postoperative recurrence and survival in glioma patients using enhanced MRI-based delta habitat radiomics: an 8-year retrospective pilot study.

World J Surg Oncol. 2025-3-28

[3]
Preoperative Prediction of Perineural Invasion in Pancreatic Ductal Adenocarcinoma Using Machine Learning Radiomics Based on Contrast-Enhanced CT Imaging.

J Imaging Inform Med. 2024-11-11

[4]
Development of a clinical-radiological nomogram for predicting severe postoperative peritumoral brain edema following intracranial meningioma resection.

Front Neurol. 2025-1-16

[5]
Machine Learning Classifier for Preoperative Prediction of Early Recurrence After Bronchial Arterial Chemoembolization Treatment in Lung Cancer Patients.

Acad Radiol. 2023-12

[6]
Integration of intratumoral and peritumoral CT radiomic features with machine learning algorithms for predicting induction therapy response in locally advanced non-small cell lung cancer.

BMC Cancer. 2025-3-13

[7]
Interpretable CT Radiomics-based Machine Learning Model for Preoperative Prediction of Ki-67 Expression in Clear Cell Renal Cell Carcinoma.

Acad Radiol. 2025-5

[8]
Prediction of peripheral lymph node metastasis (LNM) in thyroid cancer using delta radiomics derived from enhanced CT combined with multiple machine learning algorithms.

Eur J Med Res. 2025-3-13

[9]
Non-invasive Prediction of Lymph Node Metastasis in NSCLC Using Clinical, Radiomics, and Deep Learning Features From F-FDG PET/CT Based on Interpretable Machine Learning.

Acad Radiol. 2025-3

[10]
A Nomogram Combined Radiomics and Clinical Features as Imaging Biomarkers for Prediction of Visceral Pleural Invasion in Lung Adenocarcinoma.

Front Oncol. 2022-5-25

本文引用的文献

[1]
Deciphering the intratumoral histologic heterogeneity of lung adenocarcinoma using radiomics.

Eur Radiol. 2025-2-12

[2]
Deciphering Lung Adenocarcinoma Progression Through Molecular Insights: The Challenges and Potential of Radiomics and Machine Learning.

J Thorac Oncol. 2025-1

[3]
Radiomics in distinguishing between lung adenocarcinoma and lung squamous cell carcinoma: a systematic review and meta-analysis.

Front Oncol. 2024-9-24

[4]
Radiomics-Based Support Vector Machine Distinguishes Molecular Events Driving the Progression of Lung Adenocarcinoma.

J Thorac Oncol. 2025-1

[5]
Integration of deep learning and habitat radiomics for predicting the response to immunotherapy in NSCLC patients.

Cancer Immunol Immunother. 2024-6-4

[6]
Enhancing NSCLC recurrence prediction with PET/CT habitat imaging, ctDNA, and integrative radiogenomics-blood insights.

Nat Commun. 2024-4-11

[7]
Habitat-based radiomics analysis for evaluating immediate response in colorectal cancer lung metastases treated by radiofrequency ablation.

Cancer Imaging. 2024-3-26

[8]
Prediction of the benign and malignant nature of masses in COPD background based on Habitat-based enhanced CT radiomics modeling: A preliminary study.

Technol Health Care. 2024

[9]
Clinical characteristics and MRI based radiomics nomograms can predict iPFS and short-term efficacy of third-generation EGFR-TKI in EGFR-mutated lung adenocarcinoma with brain metastases.

BMC Cancer. 2024-3-21

[10]
Identification of Precise 3D CT Radiomics for Habitat Computation by Machine Learning in Cancer.

Radiol Artif Intell. 2024-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索