文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

没食子酸通过IL-6/STAT3/Notch信号通路抑制食管鳞状细胞癌进展并增强顺铂化疗敏感性。

Gallic acid suppresses esophageal squamous cell carcinoma progression and enhances cisplatin chemosensitivity through IL-6/STAT3/Notch pathway.

作者信息

Bedolla Nuran, Wu Hao, Liu Linyu, Liu Xueting, Ren Yanli

机构信息

College of Biological Sciences and Technology, YiLi Normal University, Yining, 835000, China.

出版信息

Oncol Res. 2025 May 29;33(6):1473-1484. doi: 10.32604/or.2025.060151. eCollection 2025.


DOI:10.32604/or.2025.060151
PMID:40486873
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12144628/
Abstract

BACKGROUND: Gallic acid (GA), a plant-derived polyphenol, possesses diverse biological functions such as reducing inflammation and against tumors. Currently, the influence of GA on the resistance of esophageal squamous cell carcinoma (ESCC) cells to cisplatin (DDP) is not well understood. METHODS: Cell counting kit-8 assay examined how GA affected KYSE30 and TE-1 cell viability. 5-Ethynyl-2'-deoxyuridine and TdT-mediated dUTP Nick-End labeling staining detected cell proliferation and apoptosis. Clone formation assay, flow cytometry, Carboxyfluorescein diacetate succinimidyl ester fluorescent probes, and Transwell assay determined cell biological properties, and 2',7'-Dichlorofluorescin diacetate (DCFH-DA) fluorescent probes detected oxidative stress levels. Signal transducer and activator of transcription 3 (STAT3)/Notch pathway protein levels after GA and/or Interleukin-6 (IL-6) intervention were examined through Western blot. Furthermore, a model for subcutaneous graft tumors was established in nude mice. RESULTS: GA exerted suppressive effects on cell proliferation, and caused apoptosis of KYSE30 and TE-1 cells. IL-6 intervention activated the STAT3/Notch pathway and promoted the malignant biological properties of ESCC cells. In contrast, GA attenuated the effects of IL-6, while STAT3 or Notch inhibitor further enhanced the effects of GA, suggesting that GA inhibited the IL-6/STAT3/Notch pathway. Not only that, GA promoted oxidative stress and enhanced cell sensitivity to DDP both and . CONCLUSION: GA suppresses the malignant progression of ESCC and enhances cell sensitivity to DDP by hindering the IL-6/STAT3/Notch pathway.

摘要

背景:没食子酸(GA)是一种植物来源的多酚,具有多种生物学功能,如减轻炎症和抗肿瘤。目前,GA对食管鳞状细胞癌(ESCC)细胞顺铂(DDP)耐药性的影响尚不清楚。 方法:细胞计数试剂盒-8法检测GA对KYSE30和TE-1细胞活力的影响。5-乙炔基-2'-脱氧尿苷和末端脱氧核苷酸转移酶介导的缺口末端标记染色检测细胞增殖和凋亡。克隆形成试验、流式细胞术、羧基荧光素二乙酸琥珀酰亚胺酯荧光探针和Transwell试验测定细胞生物学特性,2',7'-二氯荧光素二乙酸酯(DCFH-DA)荧光探针检测氧化应激水平。通过蛋白质免疫印迹法检测GA和/或白细胞介素-6(IL-6)干预后信号转导和转录激活因子3(STAT3)/Notch通路蛋白水平。此外,在裸鼠中建立皮下移植瘤模型。 结果:GA对细胞增殖有抑制作用,并导致KYSE30和TE-1细胞凋亡。IL-6干预激活STAT3/Notch通路,促进ESCC细胞的恶性生物学特性。相反,GA减弱了IL-6的作用,而STAT3或Notch抑制剂进一步增强了GA的作用,表明GA抑制了IL-6/STAT3/Notch通路。不仅如此,GA还促进氧化应激并增强细胞对DDP的敏感性。 结论:GA通过阻碍IL-6/STAT3/Notch通路抑制ESCC的恶性进展并增强细胞对DDP的敏感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1854/12144628/a31396aa3914/OncolRes-33-60151-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1854/12144628/c02bbe6066ec/OncolRes-33-60151-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1854/12144628/c1a667d6071a/OncolRes-33-60151-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1854/12144628/3d8c7ec1e9c3/OncolRes-33-60151-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1854/12144628/438d0dda01c5/OncolRes-33-60151-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1854/12144628/8bc0fe104061/OncolRes-33-60151-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1854/12144628/a31396aa3914/OncolRes-33-60151-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1854/12144628/c02bbe6066ec/OncolRes-33-60151-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1854/12144628/c1a667d6071a/OncolRes-33-60151-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1854/12144628/3d8c7ec1e9c3/OncolRes-33-60151-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1854/12144628/438d0dda01c5/OncolRes-33-60151-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1854/12144628/8bc0fe104061/OncolRes-33-60151-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1854/12144628/a31396aa3914/OncolRes-33-60151-f006.jpg

相似文献

[1]
Gallic acid suppresses esophageal squamous cell carcinoma progression and enhances cisplatin chemosensitivity through IL-6/STAT3/Notch pathway.

Oncol Res. 2025-5-29

[2]
Downregulation of ALDH5A1 suppresses cisplatin resistance in esophageal squamous cell carcinoma by regulating ferroptosis signaling pathways.

Mol Carcinog. 2024-10

[3]
Circular RNA hsa_circ_0000654 promotes esophageal squamous cell carcinoma progression by regulating the miR-149-5p/IL-6/STAT3 pathway.

IUBMB Life. 2020-3

[4]
Cancer-associated fibroblasts induce monocytic myeloid-derived suppressor cell generation via IL-6/exosomal miR-21-activated STAT3 signaling to promote cisplatin resistance in esophageal squamous cell carcinoma.

Cancer Lett. 2021-10-10

[5]
Luteolin enhances drug chemosensitivity by downregulating the FAK/PI3K/AKT pathway in paclitaxel‑resistant esophageal squamous cell carcinoma.

Int J Mol Med. 2024-9

[6]
[The inhibition effects of apatinib on cell proliferation, migration and apoptosis in esophageal carcinoma via Ras/Raf/MEK/ERK and JAK2/STAT3 pathways].

Zhonghua Zhong Liu Za Zhi. 2019-4-23

[7]
MicroRNA-125a-5p enhances the sensitivity of esophageal squamous cell carcinoma cells to cisplatin by suppressing the activation of the STAT3 signaling pathway.

Int J Oncol. 2018-5-16

[8]
Long non-coding RNA LINC00337 induces autophagy and chemoresistance to cisplatin in esophageal squamous cell carcinoma cells via upregulation of TPX2 by recruiting E2F4.

FASEB J. 2020-5

[9]
Triptolide reverses cis‑diamminedichloroplatinum resistance in esophageal squamous cell carcinoma by suppressing glycolysis and causing mitochondrial malfunction.

Mol Med Rep. 2025-3

[10]
S1PR1 promotes proliferation and inhibits apoptosis of esophageal squamous cell carcinoma through activating STAT3 pathway.

J Exp Clin Cancer Res. 2019-8-22

本文引用的文献

[1]
New perspectives in cancer immunotherapy: targeting IL-6 cytokine family.

J Immunother Cancer. 2023-11

[2]
Apoptotic Effect of Gallic Acid via Regulation of p-p38 and ER Stress in PANC-1 and MIA PaCa-2 Cells Pancreatic Cancer Cells.

Int J Mol Sci. 2023-10-16

[3]
Perioperative immunotherapy for esophageal squamous cell carcinoma: Now and future.

World J Gastroenterol. 2023-9-14

[4]
Gallic acid improves the metformin effects on diabetic kidney disease in mice.

Ren Fail. 2023-12

[5]
Molecular mechanism underlying epithelial-mesenchymal transformation and cisplatin resistance in esophageal squamous cell carcinoma.

Thorac Cancer. 2023-11

[6]
Anticancer Effect of Gallic Acid on Acidity-Induced Invasion of MCF7 Breast Cancer Cells.

Nutrients. 2023-8-16

[7]
DUSP4 promotes esophageal squamous cell carcinoma progression by dephosphorylating HSP90β.

Cell Rep. 2023-5-30

[8]
Anti-inflammatory and antioxidative effects of gallic acid on experimental dry eye: in vitro and in vivo studies.

Eye Vis (Lond). 2023-5-1

[9]
New Advancements in Cisplatin-Based Treatments.

Int J Mol Sci. 2023-3-21

[10]
Biomarkers for Early Detection, Prognosis, and Therapeutics of Esophageal Cancers.

Int J Mol Sci. 2023-2-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索