Khemani Bharti, Patil Shruti, Malave Sachin, Gupta Jaya
A. P. Shah Institute of Technology, Mumbai University, Thane, India.
Symbiosis Centre for Applied Artificial Intelligence (SCAAI), Symbiosis Institute of Technology Pune Campus, Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, India.
MethodsX. 2025 Apr 25;14:103325. doi: 10.1016/j.mex.2025.103325. eCollection 2025 Jun.
Understanding emotions in social media text is crucial for mental health monitoring, sentiment analysis, and misinformation detection applications. This study presents an Improved Graph Convolutional Network (IGCN) that leverages the network structure of social media text to enhance emotion classification. Unlike conventional GCN models, our approach integrates a Pointwise Mutual Information (PMI) based graph construction method, which improves the representation of semantic relationships between words. Additionally, an attention mechanism selectively emphasizes contextually significant words, enhancing interpretability and classification accuracy. •Graph-based sentiment modelling to capture deep semantic relationships in text.•Improved interpretability through attention-weighted word importance.•Scalability for large social media datasets, ensuring efficient processing. Through extensive comparative experiments, our model achieves 78.64% and 92.38% accuracy, demonstrating the effectiveness of GNNs in large-scale emotion classification. This research underscores the transformative potential of graph-based NLP models for decoding emotional tones in social media, paving the way for more accurate and insightful sentiment analysis. The research is conducted on two large-scale datasets: Twitter_EA: Categorizing tweets into six emotions-Sadness, Joy, Love, Anger, Fear, and Surprise. Emotion Recognition Dataset: Labelling emotions as Anxiety, Depression, Happiness, and Stress.
理解社交媒体文本中的情绪对于心理健康监测、情感分析和错误信息检测应用至关重要。本研究提出了一种改进的图卷积网络(IGCN),它利用社交媒体文本的网络结构来增强情感分类。与传统的GCN模型不同,我们的方法集成了一种基于点互信息(PMI)的图构建方法,该方法改进了单词之间语义关系的表示。此外,注意力机制选择性地强调上下文相关的重要单词,提高了可解释性和分类准确性。
基于图的情感建模,以捕捉文本中的深层语义关系。
通过注意力加权单词重要性提高可解释性。
适用于大型社交媒体数据集的可扩展性,确保高效处理。
通过广泛的对比实验,我们的模型准确率达到了78.64%和92.38%,证明了GNN在大规模情感分类中的有效性。这项研究强调了基于图的自然语言处理模型在解码社交媒体情感基调方面的变革潜力,为更准确、更有洞察力的情感分析铺平了道路。该研究是在两个大规模数据集上进行的:Twitter_EA:将推文分类为六种情绪——悲伤、喜悦、爱、愤怒、恐惧和惊讶;情感识别数据集:将情绪标记为焦虑、抑郁、幸福和压力。