Suppr超能文献

在随机SIHR模型中使用粒子马尔可夫链蒙特卡罗方法,通过布莱克-卡拉辛斯基过程估计动态传播率。

Estimating dynamic transmission rates with a Black-Karasinski process in stochastic SIHR models using particle MCMC.

作者信息

Drennan Avery, Covington Jeffrey, Han Dan, Attilio Andrew, Lee Jaechoul, Posner Richard, Doerry Eck, Mihaljevic Joseph, Chen Ye

机构信息

Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, AZ, U.S.A.

School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, U.S.A.

出版信息

ArXiv. 2025 May 30:arXiv:2505.24127v1.

Abstract

Compartmental models are effective in modeling the spread of infectious pathogens, but have remaining weaknesses in fitting to real datasets exhibiting stochastic effects. We propose a stochastic SIHR model with a dynamic transmission rate, where the rate is modeled by the Black-Karasinski (BK) process - a mean-reverting stochastic process with a stable equilibrium distribution, making it well-suited for modeling long-term epidemic dynamics. To generate sample paths of the BK process and estimate static parameters of the system, we employ particle Markov Chain Monte Carlo (pMCMC) methods due to their effectiveness in handling complex state-space models and jointly estimating parameters. We designed experiments on synthetic data to assess estimation accuracy and its impact on inferred transmission rates; all BK-process parameters were estimated accurately except the mean-reverting rate. We also assess the sensitivity of pMCMC to misspecification of the mean-reversion rate. Our results show that estimation accuracy remains stable across different mean-reversion rates, though smaller values increase error variance and complicate inference results. Finally, we apply our model to Arizona flu hospitalization data, finding that parameter estimates are consistent with published survey data.

摘要

compartments模型在模拟传染病病原体传播方面很有效,但在拟合表现出随机效应的真实数据集时仍存在弱点。我们提出了一种具有动态传播率的随机SIHR模型,其中传播率由Black-Karasinski(BK)过程建模——这是一个具有稳定平衡分布的均值回复随机过程,使其非常适合对长期流行动态进行建模。为了生成BK过程的样本路径并估计系统的静态参数,我们采用粒子马尔可夫链蒙特卡罗(pMCMC)方法,因为它们在处理复杂状态空间模型和联合估计参数方面很有效。我们在合成数据上设计了实验,以评估估计精度及其对推断传播率的影响;除了均值回复率外,所有BK过程参数都被准确估计。我们还评估了pMCMC对均值回复率错误设定的敏感性。我们的结果表明,尽管较小的值会增加误差方差并使推断结果复杂化,但在不同的均值回复率下,估计精度仍然稳定。最后,我们将我们的模型应用于亚利桑那州流感住院数据,发现参数估计与已发表的调查数据一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4fd/12148094/a929757e0abf/nihpp-2505.24127v1-f0007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验