Czerwinski Sean, Gurney James
School of Biology, Georgia State University, Atlanta, Georgia, USA.
Microbiol Spectr. 2025 Jul;13(7):e0288224. doi: 10.1128/spectrum.02882-24. Epub 2025 Jun 10.
The rise of antibiotic-resistant bacteria has necessitated the development of alternative therapeutic strategies, such as bacteriophage therapy, where viruses infect bacteria, reducing bacterial burden. However, rapid bacterial resistance to phage treatment remains a critical challenge, potentially leading to failure. Phage steering, which leverages the evolutionary dynamics between phage and bacteria, offers a novel solution by driving bacteria to evolve away from virulence factors or resistance mechanisms. In this study, we examined whether phage steering using bacteriophage Luz19 could function in the presence of a competing pathogen, () (USA300), while targeting (PAO1). Through co-evolution experiments with and without the competitor, we observed that Luz19 consistently steered away from the Type IV pilus (T4P), a key virulence factor, without interference from . Genomic analyses revealed mutations in T4P-associated genes, including and , which conferred phage resistance. Our findings suggest that phage steering remains effective even in polymicrobial environments, providing a promising avenue for enhancing bacteriophage therapy efficacy in complex infections.IMPORTANCEPhage steering-using phages that bind essential virulence or resistance-associated structures-offers a promising solution by selecting for resistance mutations that attenuate pathogenic traits. However, it remains unclear whether this strategy remains effective in polymicrobial contexts, where interspecies interactions may alter selective pressures. Here, we demonstrate that evolves phage resistance via loss-of-function mutations in Type IV pilus (T4P) when challenged with the T4P-binding phage Luz19 and that this evolutionary trajectory is preserved even in the presence of a competing pathogen, . Phage resistance was phenotypically confirmed via twitching motility assays and genotypically via whole-genome sequencing. These findings support the robustness of phage steering under interspecies competition, underscoring its translational potential for managing complex infections-such as those seen in cystic fibrosis-where microbial diversity is the norm.
抗生素耐药细菌的出现使得开发替代治疗策略成为必要,例如噬菌体疗法,即病毒感染细菌,减轻细菌负荷。然而,细菌对噬菌体治疗的快速耐药性仍然是一个关键挑战,可能导致治疗失败。噬菌体导向利用噬菌体与细菌之间的进化动态,通过促使细菌远离毒力因子或耐药机制提供了一种新的解决方案。在本研究中,我们研究了使用噬菌体Luz19进行的噬菌体导向在存在竞争性病原体(USA300)的情况下,同时靶向铜绿假单胞菌(PAO1)时是否能发挥作用。通过有或没有竞争者的共同进化实验,我们观察到Luz19始终引导铜绿假单胞菌远离IV型菌毛(T4P),这是一种关键的毒力因子,且不受USA300的干扰。基因组分析揭示了T4P相关基因中的突变,包括pilA和pilC,这些突变赋予了噬菌体抗性。我们的研究结果表明,即使在多微生物环境中,噬菌体导向仍然有效,为提高噬菌体疗法在复杂感染中的疗效提供了一条有前景的途径。重要性噬菌体导向——使用结合必需毒力或抗性相关结构的噬菌体——通过选择减弱致病性状的抗性突变提供了一种有前景的解决方案。然而,尚不清楚这种策略在多微生物环境中是否仍然有效,在这种环境中种间相互作用可能会改变选择压力。在这里,我们证明,当受到结合T4P的噬菌体Luz19挑战时,铜绿假单胞菌通过IV型菌毛(T4P)的功能丧失突变进化出噬菌体抗性,并且即使在存在竞争性病原体USA300的情况下,这种进化轨迹也得以保留。通过抽动运动试验在表型上证实了噬菌体抗性,并通过全基因组测序在基因型上进行了证实。这些发现支持了种间竞争下噬菌体导向的稳健性,强调了其在管理复杂感染(如在囊性纤维化中所见的感染,其中微生物多样性是常态)方面的转化潜力。
Microbiol Spectr. 2025-7
Appl Environ Microbiol. 2024-10-23
Cochrane Database Syst Rev. 2017-4-25
Arch Ital Urol Androl. 2025-6-30
Cochrane Database Syst Rev. 2022-12-13
Microbiol Spectr. 2025-7
Microbiol Spectr. 2025-7
Nat Commun. 2024-10-8
Biofilm. 2023-5-2
Signal Transduct Target Ther. 2022-6-25
Evol Med Public Health. 2020-7-11
Front Cell Infect Microbiol. 2021-4-16