Wan Xufeng, Tong Le, Zhang Zhuang, Li Qiaochu, Xu Hong, Yue Yan, Cao Jian, Zheng Fuyuan, Chen Xiaoting, Li Shuoyuan, Li Qi, Yang Xiao, Wang Haoyang, Li Jianshu, Zhou Zongke, Wang Duan
Orthopedic Research Institute and Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China.
Department of Emergency Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China.
ACS Appl Mater Interfaces. 2025 Jun 25;17(25):36400-36419. doi: 10.1021/acsami.5c04939. Epub 2025 Jun 10.
Critical-sized bone defects present formidable challenges in orthopedic reconstruction due to the inability of existing biomaterial scaffolds to concurrently regulate osteogenic-osteoclastic coupling and vascularization. Conventional hydroxyapatite (HA)-based grafts often fail to stimulate angiogenesis and may impede remodeling by suppressing osteoclastogenesis. Herein, a PTHrp-loaded organic-inorganic hybrid aerogel scaffold (PTHrp-NCHA) is developed, designed to regulate bone regeneration by synergistically promoting osteoblast and osteoclast activity while enhancing vascularization. The scaffold, composed of nanocellulose, collagen, and hydroxyapatite, provides a biomimetic porous structure, which enables PTHrp to penetrate deep into the material, ensuring a sustained release for over 14 days that maintains effective drug concentrations locally, stimulating angiogenesis and osteoblast differentiation. HA and PTHrp synergistically promote bone regeneration. On the one hand, HA promotes bone regeneration through its inherent osteogenic properties. In addition, PTHrp promotes osteoclast differentiation by regulating RANKL, and its strong osteoclast performance is offset by the osteogenic performance of HA. The biomimetic scaffold significantly enhanced the proliferation, osteogenic, and angiogenic potential in vitro, as demonstrated by upregulated osteogenic (OCN, BMP-2) and angiogenic marker (VEGF). In vivo, the rabbit femoral condyle defect model reveals that PTHrp-NCHA facilitates extensive bone ingrowth, as evidenced by micro-CT and H&E staining. These findings provide a robust foundation for the clinical translation of PTHrp-based scaffolds in regenerative medicine.
由于现有的生物材料支架无法同时调节成骨-破骨细胞耦合和血管生成,临界尺寸的骨缺损在骨科重建中面临巨大挑战。传统的基于羟基磷灰石(HA)的移植物往往无法刺激血管生成,并且可能通过抑制破骨细胞生成来阻碍骨重塑。在此,开发了一种负载甲状旁腺激素相关蛋白(PTHrp)的有机-无机杂化气凝胶支架(PTHrp-NCHA),旨在通过协同促进成骨细胞和破骨细胞活性同时增强血管生成来调节骨再生。该支架由纳米纤维素、胶原蛋白和羟基磷灰石组成,提供了一种仿生多孔结构,使PTHrp能够深入渗透到材料中,确保持续释放超过14天,在局部维持有效的药物浓度,刺激血管生成和成骨细胞分化。HA和PTHrp协同促进骨再生。一方面,HA通过其固有的成骨特性促进骨再生。此外,PTHrp通过调节核因子κB受体活化因子配体(RANKL)促进破骨细胞分化,其强大的破骨细胞性能被HA的成骨性能所抵消。该仿生支架在体外显著增强了增殖、成骨和血管生成潜力,这通过上调成骨标志物(骨钙素、骨形态发生蛋白-2)和血管生成标志物(血管内皮生长因子)得以证明。在体内,兔股骨髁缺损模型显示PTHrp-NCHA促进了广泛的骨长入,显微CT和苏木精-伊红染色证明了这一点。这些发现为基于PTHrp的支架在再生医学中的临床转化提供了坚实的基础。