Mishra Shivani, Singh Surbhi, Ashish Ashish, Rai Sangeeta, Singh Royana
Department of Anatomy, Institute of Medical Sciences Banaras, Hindu University, Varanasi, U.P, 221005, India.
Multidisciplinary Research Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P, 221005, India.
Comput Biol Med. 2025 Aug;194:110535. doi: 10.1016/j.compbiomed.2025.110535. Epub 2025 Jun 9.
Recurrent pregnancy loss (RPL) is defined as the spontaneous loss of two or more pregnancies on or before 24 weeks of gestation. It has multifactorial aetiology, including genetic abnormalities, immune dysfunction, hormonal imbalances, and environmental factors. The Gene Expression Omnibus (GEO) database and its analytical tool GEO2R enable differential gene expression analysis to identify potential biomarkers in RPL.
This study aims to identify differentially expressed genes (DEGs) and pathways contributing to RPL pathogenesis using transcriptome data mining and in silico approaches.
High-throughput gene expression data from four datasets (GSE141716, GSE204721, GSE161969, and GSE139180) were analysed. Enrichment analysis of DEGs conducted using the KEGG database and the BINGO plugin in Cytoscape. Protein-protein interaction (PPI) networks constructed using STRING, and molecular docking of key hub genes performed using HDOCK and Discovery Studio. ELISA validation of TNF-α, CD44, and MMP2 analysed on serum samples.
Pathway analysis revealed immune-related pathways, including TNF-α, CD44, MMP2, VEGFR, and IL-17 signalling. Ten hub genes identified TNF, CD44, MMP2, CCL2, FN1, IL1A, THBS1, STAT1, ICAM1, and PXDN. Docking analysis confirmed TNFα-CD44 interactions, emphasizing their role in immune tolerance. ELISA results showed significantly elevated TNF-α (p = 0.001) and MMP2 (p = 0.0001) levels in RPL cases, while CD44 was not found significant (p = 0.632).
This transcriptomic study highlights immune modulation as a key factor in RPL, identifying potential biomarkers and therapeutic targets for improved diagnosis and management.
复发性流产(RPL)定义为妊娠24周及以前发生两次或两次以上的自然流产。其病因是多因素的,包括基因异常、免疫功能障碍、激素失衡和环境因素。基因表达综合数据库(GEO)及其分析工具GEO2R能够进行差异基因表达分析,以识别RPL中的潜在生物标志物。
本研究旨在利用转录组数据挖掘和计算机模拟方法,识别与RPL发病机制相关的差异表达基因(DEG)和信号通路。
分析了来自四个数据集(GSE141716、GSE204721、GSE161969和GSE139180)的高通量基因表达数据。使用KEGG数据库和Cytoscape中的BINGO插件对DEG进行富集分析。使用STRING构建蛋白质-蛋白质相互作用(PPI)网络,并使用HDOCK和Discovery Studio对关键枢纽基因进行分子对接。对血清样本中的TNF-α、CD44和MMP2进行ELISA验证分析。
通路分析揭示了与免疫相关的通路,包括TNF-α、CD44、MMP2、VEGFR和IL-17信号通路。确定了10个枢纽基因,即TNF、CD44、MMP2、CCL2、FN1、IL1A、THBS1、STAT1、ICAM1和PXDN。对接分析证实了TNFα与CD44的相互作用,强调了它们在免疫耐受中的作用。ELISA结果显示,RPL病例中TNF-α(p = 0.001)和MMP2(p = 0.0001)水平显著升高,而CD44未发现显著差异(p = 0.632)。
本转录组学研究强调免疫调节是RPL的关键因素,确定了潜在的生物标志物和治疗靶点,以改善诊断和管理。