Suppr超能文献

转录组学的整合分析揭示了中性粒细胞性哮喘中NETosis的异质性以及Ncf1作为一种预后生物标志物。

Integration analysis of transcriptomics revealed NETosis heterogeneity and Ncf1 as a prognostic biomarker in neutrophil asthma.

作者信息

Yan Qian, Zhang Miaofen, Yang Jing, Ye Bei, Zheng Wenjiang, Huang Huiting, Liao Gang, Jiang Yong, Zhan Shaofeng, Huang Xiufang

机构信息

First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Postdoctoral Research Station of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; State Key Laboratory of Traditional Chinese Medicine, Guangzhou 510405, China.

First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.

出版信息

Int Immunopharmacol. 2025 Aug 28;161:115004. doi: 10.1016/j.intimp.2025.115004. Epub 2025 Jun 10.

Abstract

OBJECTIVE

Neutrophil extracellular traps (NETs) contribute to neutrophilic asthma (NA) pathogenesis, but systematic analyses of NETosis remain limited. This study aimed to identify NETs-associated biomarkers and explore their clinical relevance in NA.

METHODS

A murine NA model was established through OVA/CFA sensitization. Transcriptomic profiling of lung tissues identified NETs-related differentially expressed genes (DEGs), these were then refined via LASSO regression and validated through in vivo functional assays.

RESULTS

NA mice exhibited pronounced inflammatory cell infiltration and collagen deposition surrounding the trachea, bronchus and blood vessel. Also, they had increased total numbers of immune cells, neutrophils, and higher expression of IgE, IL-8, TNF-α and MPO in serum and BALF. They also did not respond well to dexamethasone treatment. RNA-seq revealed 667 DEGs, with pathway enrichment in NETs formation. Elevated levels of NETs components (Cit-H3/NE/MPO/PADI4), cfDNA in BALF and serum, and ROS in BALF were also confirmed in NA mice. Then, 19 genes associated with NETs were selected and validated by RT-qPCR. LASSO regression and ROC analysis prioritized NCF1 as a pivotal NETs biomarker, showing strong diagnostic accuracy. Together with NCF1/MPO co-localization study by immunofluorescence, NCF1 immunohistochemistry confirmed their utility as diagnostic biomarkers for NETs-related pathologies. We predicted that macrophages were highly expressed in NA and positively correlated with neutrophils, and double immunofluorescence labeling analysis of LY6G and F4/80 suggested the correlation of them.

CONCLUSION

Our multi-modal analysis identifies NCF1-driven NETosis and myeloid cell interactions as key factors influencing NA development and glucocorticoid resistance, providing actionable targets for therapeutic intervention.

摘要

目的

中性粒细胞胞外诱捕网(NETs)在嗜中性粒细胞性哮喘(NA)发病机制中起作用,但对NETosis的系统分析仍然有限。本研究旨在鉴定与NETs相关的生物标志物,并探讨它们在NA中的临床相关性。

方法

通过卵清蛋白/完全弗氏佐剂(OVA/CFA)致敏建立小鼠NA模型。对肺组织进行转录组分析以鉴定与NETs相关的差异表达基因(DEGs),然后通过套索回归对这些基因进行优化,并通过体内功能试验进行验证。

结果

NA小鼠在气管、支气管和血管周围表现出明显的炎性细胞浸润和胶原沉积。此外,它们的免疫细胞、中性粒细胞总数增加,血清和支气管肺泡灌洗液(BALF)中IgE、IL-8、TNF-α和髓过氧化物酶(MPO)的表达更高。它们对地塞米松治疗反应也不佳。RNA测序揭示了667个DEGs,在NETs形成过程中富集了相关通路。在NA小鼠中还证实了BALF和血清中NETs成分(瓜氨酸化组蛋白H3/NE/MPO/肽基精氨酸脱亚氨酶4)、cfDNA以及BALF中活性氧(ROS)水平升高。然后,选择19个与NETs相关的基因并通过逆转录定量聚合酶链反应(RT-qPCR)进行验证。套索回归和ROC分析将中性粒细胞胞质因子1(NCF1)确定为关键的NETs生物标志物,显示出很强的诊断准确性。通过免疫荧光进行的NCF1/MPO共定位研究以及NCF1免疫组织化学证实了它们作为NETs相关病理诊断生物标志物的效用。我们预测巨噬细胞在NA中高表达且与中性粒细胞呈正相关,LY6G和F4/80的双重免疫荧光标记分析表明了它们之间的相关性。

结论

我们的多模式分析确定了由NCF1驱动的NETosis和髓样细胞相互作用是影响NA发展和糖皮质激素抵抗的关键因素,为治疗干预提供了可操作的靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验