Suppr超能文献

肝细胞癌研究中肿瘤相关巨噬细胞的知识结构分析与网络可视化:文献计量图谱

Knowledge structure analysis and network visualization of tumor-associated macrophages in hepatocellular carcinoma research: A bibliometric mapping.

作者信息

Mo Ping-Li, Lin Ming, Gao Bo-Wen, Zhang Shang-Bin, Chen Jian-Ping

机构信息

Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China.

Department of Hepatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China.

出版信息

World J Clin Oncol. 2025 May 24;16(5):102747. doi: 10.5306/wjco.v16.i5.102747.

Abstract

BACKGROUND

Tumor-associated macrophages (TAMs) have demonstrated significant potential as a research and treatment approach for hepatocellular carcinoma (HCC). Nevertheless, a comprehensive quantitative analysis of TAMs in HCC remained insufficient. Therefore, the objective of this study was to employ bibliometric methods to investigate the development trends and research frontiers pertaining to this field.

AIM

To determine the knowledge structure and current research hotspots by bibliometric analysis of scholarly papers pertaining to TAMs in HCC.

METHODS

The present study employed the Web of Science Core Collection to identify all papers related to TAMs in HCC research. Utilizing the Analysis Platform of Bibliometrics, CiteSpace 6.2.R4, and Vosviewer 1.6.19, the study conducted a comprehensive analysis encompassing multiple dimensions such as publication quantity, countries of origin, affiliated institutions, publishing journals, contributing authors, co-references, author keywords, and emerging frontiers within this research domain.

RESULTS

A thorough examination was undertaken on 818 papers within this particular field, published between January 1, 1985 to September 1, 2023, which has witnessed a substantial surge in scholarly contributions since 2012, with a notable outbreak in 2019. China was serving as the central hub in this field, with Fudan University leading in terms of publications and citations. Chinese scholars have taken the forefront in driving the research expansion within this field. emerged as the most influential journal in this field. The study by Qian and Pollard in 2010 received the highest number of co-citations. It was observed that the citation bursts of references coincided with the outbreak of publications. Notably, "tumor microenvironment", "immunotherapy", "prognostic", "inflammation", and "polarization", emerged as frequently occurring keywords in this field. Of particular interest, "immune evasion", "immune infiltration", and "cancer genome atlas" were identified as emerging frontiers in recent research.

CONCLUSION

The field of TAMs in HCC exhibited considerable potential, as evidenced by the promising prospects of immunotherapeutic interventions targeting TAMs for the amelioration of HCC. The emerging frontiers in this field primarily revolved around modulating the immunosuppressive characteristics of TAMs within a liver-specific immune environment, with a focus on how to counter immune evasion and reduce immune infiltration.

摘要

背景

肿瘤相关巨噬细胞(TAMs)已显示出作为肝细胞癌(HCC)研究和治疗方法的巨大潜力。然而,对HCC中TAMs的全面定量分析仍然不足。因此,本研究的目的是采用文献计量学方法来研究该领域的发展趋势和研究前沿。

目的

通过对HCC中与TAMs相关的学术论文进行文献计量分析,确定知识结构和当前研究热点。

方法

本研究利用Web of Science核心合集来识别HCC研究中所有与TAMs相关的论文。利用文献计量分析平台CiteSpace 6.2.R4和Vosviewer 1.6.19,该研究进行了全面分析,涵盖了多个维度,如发表数量、原产国、附属机构、发表期刊、贡献作者、共被引文献、作者关键词以及该研究领域内的新兴前沿。

结果

对1985年1月1日至2023年9月1日期间该特定领域的818篇论文进行了全面审查,自2012年以来,该领域的学术贡献大幅增加,2019年出现显著爆发。中国是该领域的中心枢纽,复旦大学在发表数量和被引次数方面领先。中国学者在推动该领域的研究扩展方面处于前沿。 成为该领域最具影响力的期刊。钱和波拉德在2010年的研究获得了最高的共被引次数。观察到参考文献的引用爆发与出版物的爆发相吻合。值得注意的是,“肿瘤微环境 ” “免疫治疗” “预后” “炎症” 和 “极化” 成为该领域频繁出现的关键词。特别有趣的是,“免疫逃逸” “免疫浸润” 和 “癌症基因组图谱” 被确定为近期研究中的新兴前沿。

结论

HCC中TAMs领域显示出相当大的潜力,以TAMs为靶点的免疫治疗干预对改善HCC具有广阔前景。该领域的新兴前沿主要围绕在肝脏特异性免疫环境中调节TAMs的免疫抑制特性,重点是如何对抗免疫逃逸和减少免疫浸润。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7538/12149817/8c328820b7e4/102747-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验