Suppr超能文献

一种基于显著图像语义的足球犯规动作特征划分方法。

A method for feature division of Soccer Foul actions based on salience image semantics.

作者信息

Wang Jianming, Li Lifeng

机构信息

Department of Physical Education, Tongling University, Tongling, Anhui, China.

Sports Training Institute, Shenyang Sport University, Shenyang, Liaoning, China.

出版信息

PLoS One. 2025 Jun 13;20(6):e0322889. doi: 10.1371/journal.pone.0322889. eCollection 2025.

Abstract

The purpose of this study is to realize the automatic identification and classification of fouls in football matches and improve the overall identification accuracy. Therefore, a Deep Learning-Based Saliency Prediction Model (DLSPM) is proposed. DLSPM combines the improved DeepPlaBV 3+architecture for salient region detection, Graph Convolutional Networks (GCN) for feature extraction and Deep Neural Network (DNN) for classification. By automatically identifying the key action areas in the image, the model reduces the dependence on traditional image processing technology and manual feature extraction, and improves the accuracy and robustness of foul behavior identification. The experimental results show that DLSPM performs significantly better than the existing methods on multiple video motion recognition data sets, especially when dealing with complex scenes and dynamic changes. The research results not only provide a new perspective and method for the field of video motion recognition, but also lay a foundation for the application in intelligent monitoring and human-computer interaction.

摘要

本研究的目的是实现足球比赛中犯规行为的自动识别与分类,并提高整体识别准确率。因此,提出了一种基于深度学习的显著性预测模型(DLSPM)。DLSPM结合了用于显著区域检测的改进型DeepPlaBV 3+架构、用于特征提取的图卷积网络(GCN)和用于分类的深度神经网络(DNN)。通过自动识别图像中的关键动作区域,该模型减少了对传统图像处理技术和手动特征提取的依赖,提高了犯规行为识别的准确性和鲁棒性。实验结果表明,DLSPM在多个视频运动识别数据集上的表现明显优于现有方法,尤其是在处理复杂场景和动态变化时。研究结果不仅为视频运动识别领域提供了新的视角和方法,也为智能监控和人机交互中的应用奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d06/12165423/e890c1307663/pone.0322889.g001.jpg

相似文献

1
A method for feature division of Soccer Foul actions based on salience image semantics.
PLoS One. 2025 Jun 13;20(6):e0322889. doi: 10.1371/journal.pone.0322889. eCollection 2025.
2
Automated Video Behavior Recognition of Pigs Using Two-Stream Convolutional Networks.
Sensors (Basel). 2020 Feb 17;20(4):1085. doi: 10.3390/s20041085.
3
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.
Cancer Biomark. 2025 Mar;42(3):18758592241311184. doi: 10.1177/18758592241311184. Epub 2025 Apr 4.
4
Comparative analysis of automated foul detection in football using deep learning architectures.
Sci Rep. 2025 Apr 24;15(1):14236. doi: 10.1038/s41598-025-96945-0.
6
DER-GCN: Dialog and Event Relation-Aware Graph Convolutional Neural Network for Multimodal Dialog Emotion Recognition.
IEEE Trans Neural Netw Learn Syst. 2025 Mar;36(3):4908-4921. doi: 10.1109/TNNLS.2024.3367940. Epub 2025 Feb 28.
7
Feature Aggregation With Reinforcement Learning for Video-Based Person Re-Identification.
IEEE Trans Neural Netw Learn Syst. 2019 Dec;30(12):3847-3852. doi: 10.1109/TNNLS.2019.2899588. Epub 2019 Mar 12.
8
Football teaching and training based on video surveillance using deep learning.
Technol Health Care. 2024;32(6):4077-4096. doi: 10.3233/THC-231860.
9
White blood cells detection and classification based on regional convolutional neural networks.
Med Hypotheses. 2020 Feb;135:109472. doi: 10.1016/j.mehy.2019.109472. Epub 2019 Nov 4.
10
Analysis of the role and robustness of artificial intelligence in commodity image recognition under deep learning neural network.
PLoS One. 2020 Jul 7;15(7):e0235783. doi: 10.1371/journal.pone.0235783. eCollection 2020.

本文引用的文献

2
Dual-Graph Attention Convolution Network for 3-D Point Cloud Classification.
IEEE Trans Neural Netw Learn Syst. 2024 Apr;35(4):4813-4825. doi: 10.1109/TNNLS.2022.3162301. Epub 2024 Apr 4.
4
Two-Stream Region Convolutional 3D Network for Temporal Activity Detection.
IEEE Trans Pattern Anal Mach Intell. 2019 Oct;41(10):2319-2332. doi: 10.1109/TPAMI.2019.2921539. Epub 2019 Jun 7.
5
Optical flow estimation for flame detection in videos.
IEEE Trans Image Process. 2013 Jul;22(7):2786-97. doi: 10.1109/TIP.2013.2258353. Epub 2013 Apr 16.
6
Large displacement optical flow: descriptor matching in variational motion estimation.
IEEE Trans Pattern Anal Mach Intell. 2011 Mar;33(3):500-13. doi: 10.1109/TPAMI.2010.143.
7
Fast and robust optic disc detection using pyramidal decomposition and Hausdorff-based template matching.
IEEE Trans Med Imaging. 2001 Nov;20(11):1193-200. doi: 10.1109/42.963823.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验