Xu Renjie, Jiang Yuanyuan, Lei Houyou, Liu Feng, Liu Kerui, Feng Liheng, Ran Guangliu, Zhang Wenkai, Zhong Cheng, Zhu Xiaozhang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100190, P. R. China.
Sci Adv. 2025 Jun 13;11(24):eadt6024. doi: 10.1126/sciadv.adt6024.
Exciton dissociation in organic solar cells (OSCs) is primarily achieved through interfacial charge-transfer (CT) states, leading to a trade-off between open-circuit voltage () and short-circuit current (). Spatially dispersed delocalized singlet excitons (DSEs) in nonfullerene acceptors (NFAs) provide an alternative channel to promote charge generation without interfacial CT state. Here, we manipulate intermolecular interactions, carrier dynamics, and photovoltaic properties through selective asymmetric fluorination. Two asymmetric molecules, Z12 and Z13, were synthesized by substituting the terminal group with different fluorine atoms compared with the symmetrical molecule, Z11. Z12 showed enhanced molecular interactions, promoting to more compact and ordered stacking, which in turn promotes the DSE formation, benefiting the synergistic enhancement of and . The D18:Z12-based device achieved a remarkable power conversion efficiency of 19.5%, notably outperforming the other two devices. Our study indicates that controlling the molecular configuration by selective fluorination to enhance the DSE formation in NFAs is an effective strategy to achieve efficient OSCs.
有机太阳能电池(OSCs)中的激子解离主要通过界面电荷转移(CT)态来实现,这导致开路电压()和短路电流()之间存在权衡。非富勒烯受体(NFAs)中空间分散的离域单重态激子(DSEs)提供了一种无需界面CT态就能促进电荷产生的替代通道。在此,我们通过选择性不对称氟化来操纵分子间相互作用、载流子动力学和光伏特性。与对称分子Z11相比,通过用不同的氟原子取代端基合成了两个不对称分子Z12和Z13。Z12表现出增强的分子间相互作用,促进形成更紧凑和有序的堆积,进而促进DSE的形成,有利于和的协同增强。基于D18:Z12的器件实现了19.5%的显著功率转换效率,明显优于其他两个器件。我们的研究表明,通过选择性氟化控制分子构型以增强NFAs中DSE的形成是实现高效OSCs的有效策略。