Papanastasiou Giorgos, Scutari Marco, Tachdjian Raffi, Hernandez-Trujillo Vivian, Raasch Jason, Billmeyer Kaylyn, Vasilyev Nikolay V, Ivanov Vladimir
Pfizer Inc., New York, NY, USA.
Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), Lugano, Switzerland.
NPJ Digit Med. 2025 Jun 14;8(1):361. doi: 10.1038/s41746-025-01761-5.
Combined immunodeficiencies (CID) and common variable immunodeficiencies (CVID), prevalent yet substantially underdiagnosed primary immunodeficiencies, necessitate improved early detection. Leveraging large-scale electronic health records (EHR) from four nationwide US cohorts, we developed a novel causal Bayesian Network (BN) model to identify antecedent clinical phenotypes associated with CID/CVID. Consensus directed acyclic graphs (DAGs) demonstrated robust predictive performance within each cohort (ROC AUC: 0.61-0.77) and generalizability across unseen cohorts (ROC AUC: 0.56-0.72) in identifying CID/CVID, despite varying inclusion criteria across cohorts. The consensus DAGs reveal causal relationships between comorbidities preceding CID/CVID diagnosis, including autoimmune and blood disorders, lymphomas, organ damage or inflammation, respiratory conditions, genetic anomalies, recurrent infections, and allergies. Further evaluation through causal inference and by expert clinical immunologists substantiates the clinical relevance of the identified phenotypic trajectories. These findings hold promise for translation into improved clinical practice, potentially leading to earlier identification and intervention of adults at risk for CID/CVID.
联合免疫缺陷(CID)和常见可变免疫缺陷(CVID)是普遍存在但诊断严重不足的原发性免疫缺陷,因此需要改进早期检测方法。利用来自美国四个全国性队列的大规模电子健康记录(EHR),我们开发了一种新型因果贝叶斯网络(BN)模型,以识别与CID/CVID相关的前期临床表型。共识有向无环图(DAG)在每个队列中都表现出强大的预测性能(ROC AUC:0.61-0.77),并且在识别CID/CVID时,尽管各队列的纳入标准不同,但在未见过的队列中也具有可推广性(ROC AUC:0.56-0.72)。共识DAG揭示了CID/CVID诊断前合并症之间的因果关系,包括自身免疫性和血液疾病、淋巴瘤、器官损伤或炎症、呼吸道疾病、遗传异常、反复感染和过敏。通过因果推断和临床免疫专家的进一步评估证实了所确定的表型轨迹的临床相关性。这些发现有望转化为改进的临床实践,可能导致对有CID/CVID风险的成年人进行更早的识别和干预。