Fang Shengwei, Alrumaihi Faris, Alwanian Wanian M, Alharbi Hajed Obaid, Alnughymishi Nujud Ahmed, Alfifi Somayah Mohammad, Bennett Elizabeth, Zhang Peipei
Department of Nuclear Medicine, Hangzhou Cancer Hospital, Hangzhou 310002, China.
Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia.
Curr Probl Cardiol. 2025 Jun 13;50(9):103104. doi: 10.1016/j.cpcardiol.2025.103104.
Enhancer of zeste homolog 2 (EZH2), canonically recognized as an oncogenic driver through its histone methyltransferase activity, has emerged as a critical epigenetic orchestrator in cardiovascular pathophysiology with unexpected functional complexity. While extensive oncological research has established EZH2's role in facilitating the Warburg effect and metabolic reprogramming in cancer cells, recent cardiovascular investigations reveal that EZH2 employs remarkably parallel mechanisms to coordinate the metabolic shift from oxidative phosphorylation to glycolysis during cardiac ischemia-a previously unrecognized molecular paradigm bridging cancer biology and cardiovascular pathophysiology. This review synthesizes emerging evidence demonstrating EZH2's unique context-dependent functionality in cardiac tissue, acting simultaneously as a transcriptional co-activator through non-canonical FOXM1 interaction and as an epigenetic repressor via its canonical PRC2-mediated H3K27 trimethylation activity. Most significantly, we highlight the novel discovery that EZH2 establishes a distinctive methylation landscape in ischemic cardiomyopathy through direct interaction with DNA methyltransferases, creating a molecular signature that suppresses cardioprotective factors like KLF15 while enhancing matrix metalloproteinase expression that drives adverse cardiac remodeling. Despite compelling preclinical evidence supporting EZH2 inhibition across multiple cardiovascular conditions, including atherosclerosis, cardiac hypertrophy, and myocardial fibrosis, a critical translational gap persists due to delivery limitations, potential off-target effects, and inadequate understanding of EZH2's temporal and tissue-specific functions. This review identifies crucial research opportunities, including developing cardiac-specific EZH2 modulators, exploring combination therapies targeting downstream pathways, and comprehensive interactome mapping to reveal cardiovascular-specific interactions. Decoding the complex regulatory networks governed by EZH2 across developmental stages and disease contexts represents a frontier for developing innovative epigenetic interventions addressing the global burden of cardiovascular disease.
zeste 同源物 2 增强子(EZH2),传统上被认为是一种致癌驱动因子,通过其组蛋白甲基转移酶活性发挥作用,现已成为心血管病理生理学中一个关键的表观遗传调控因子,具有意想不到的功能复杂性。虽然广泛的肿瘤学研究已经确定了 EZH2 在促进癌细胞的瓦伯格效应和代谢重编程中的作用,但最近的心血管研究表明,EZH2 采用了非常相似的机制来协调心脏缺血期间从氧化磷酸化到糖酵解的代谢转变——这是一个以前未被认识到的分子范式,将癌症生物学和心血管病理生理学联系起来。本综述综合了新出现的证据,证明 EZH2 在心脏组织中具有独特的上下文依赖性功能,它通过非经典的 FOXM1 相互作用同时作为转录共激活因子,通过其经典的 PRC2 介导的 H3K27 三甲基化活性作为表观遗传抑制因子。最重要的是,我们强调了一项新发现,即 EZH2 通过与 DNA 甲基转移酶直接相互作用,在缺血性心肌病中建立了独特的甲基化图谱,创造了一种分子特征,抑制了如 KLF15 等心脏保护因子,同时增强了驱动不良心脏重塑的基质金属蛋白酶的表达。尽管有令人信服的临床前证据支持在多种心血管疾病中抑制 EZH2,包括动脉粥样硬化、心脏肥大和心肌纤维化,但由于递送限制、潜在的脱靶效应以及对 EZH2 的时间和组织特异性功能了解不足,关键的转化差距仍然存在。本综述确定了关键的研究机会,包括开发心脏特异性 EZH2 调节剂、探索针对下游途径的联合疗法以及全面的相互作用组图谱绘制,以揭示心血管特异性相互作用。解码 EZH2 在发育阶段和疾病背景下所控制的复杂调控网络,是开发创新的表观遗传干预措施以应对心血管疾病全球负担的前沿领域。