文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

功能化姜黄纳米囊泡用于在结直肠癌治疗中精准递送阿霉素

Functionalized turmeric nanovesicles for precision delivery of doxorubicin in colorectal carcinoma treatment.

作者信息

Meng Chen, Yi Xue, Duan Meitao, Mahal Ahmed, Zhang Zhiqiang, Ren Jungang, Chen Ming, Yang Lin, Xu Moxun, Obaidullah Ahmad J, Song Linwei, Li Shuxian, Wang Chen

机构信息

College of Pharmacy, Jiamusi University, Jiamusi, China.

Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China.

出版信息

Front Pharmacol. 2025 May 30;16:1587560. doi: 10.3389/fphar.2025.1587560. eCollection 2025.


DOI:10.3389/fphar.2025.1587560
PMID:40520210
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12162503/
Abstract

Nanoscale vesicles have emerged as promising biocompatible vehicles for precision drug delivery, owing to their inherent therapeutic properties and versatile structural configurations. This study introduces an innovative biomanufacturing strategy utilizing curcumin-extracted nanovesicles (TNVs) conjugated with a cancer-selective peptide and encapsulated with doxorubicin to optimize therapeutic outcomes in colorectal malignancies. TNVs were purified through refined ultracentrifugation protocols, demonstrating uniform saucer-shaped morphology with an average size of 162.42 ± 3.67 nm and stable bilayer architecture dominated by triglyceride (30%) and ceramide (11.8%) constituents. Peptide-mediated surface functionalization substantially improved intracellular internalization efficiency in HCT-116 colon carcinoma models. The engineered TNV-P-D formulation exhibited potent tumoricidal activity (IC = 54.8 μg/ mL), outperforming both unbound doxorubicin (IC = 795.2 ng/mL) and nonfunctionalized TNV-DOX counterparts (IC = 129.7 μg/mL). Cell cycle profiling revealed G1-phase blockade (91.3% G1-phase occupancy), corroborating the platform's proliferation-inhibiting capacity. In murine CT26. WT xenograft models, TNV-P-D administration achieved significant tumor regression (65% volume reduction, p< 0.001) while preserving hepatobiliary function and demonstrating negligible multiorgan toxicity. These results position peptide-augmented phytovesicles as a multifunctional therapeutic system capable of dual-action tumor targeting and systemic toxicity mitigation in colorectal oncology.

摘要

纳米级囊泡因其固有的治疗特性和多样的结构构型,已成为用于精准药物递送的有前景的生物相容性载体。本研究引入了一种创新的生物制造策略,利用与癌症选择性肽缀合并包裹阿霉素的姜黄素提取纳米囊泡(TNVs),以优化结直肠癌的治疗效果。通过精细的超速离心方案纯化TNVs,其呈现出均匀的碟形形态,平均尺寸为162.42±3.67nm,具有以甘油三酯(30%)和神经酰胺(11.8%)成分为主的稳定双层结构。肽介导的表面功能化显著提高了HCT-116结肠癌模型中的细胞内内化效率。工程化的TNV-P-D制剂表现出强大的杀肿瘤活性(IC = 54.8μg/mL),优于游离阿霉素(IC = 795.2ng/mL)和未功能化的TNV-DOX对应物(IC = 129.7μg/mL)。细胞周期分析显示G1期阻滞(G1期占有率为91.3%),证实了该平台的增殖抑制能力。在小鼠CT26.WT异种移植模型中,给予TNV-P-D可实现显著的肿瘤消退(体积减少65%,p<0.001),同时保留肝胆功能并显示出可忽略不计的多器官毒性。这些结果将肽增强的植物囊泡定位为一种多功能治疗系统,能够在结直肠癌治疗中实现双作用肿瘤靶向和减轻全身毒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/12162503/47d7271a0f27/fphar-16-1587560-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/12162503/d95e693bb459/fphar-16-1587560-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/12162503/462178ca6961/fphar-16-1587560-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/12162503/bc51f7e841b0/fphar-16-1587560-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/12162503/c16d0c73652f/fphar-16-1587560-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/12162503/8bd9111d32cf/fphar-16-1587560-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/12162503/ccee9fe71934/fphar-16-1587560-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/12162503/7da63e5d248f/fphar-16-1587560-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/12162503/c409eb66ba26/fphar-16-1587560-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/12162503/3328282f8c48/fphar-16-1587560-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/12162503/c69fecb4b338/fphar-16-1587560-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/12162503/6da593ac2926/fphar-16-1587560-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/12162503/47d7271a0f27/fphar-16-1587560-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/12162503/d95e693bb459/fphar-16-1587560-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/12162503/462178ca6961/fphar-16-1587560-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/12162503/bc51f7e841b0/fphar-16-1587560-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/12162503/c16d0c73652f/fphar-16-1587560-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/12162503/8bd9111d32cf/fphar-16-1587560-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/12162503/ccee9fe71934/fphar-16-1587560-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/12162503/7da63e5d248f/fphar-16-1587560-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/12162503/c409eb66ba26/fphar-16-1587560-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/12162503/3328282f8c48/fphar-16-1587560-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/12162503/c69fecb4b338/fphar-16-1587560-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/12162503/6da593ac2926/fphar-16-1587560-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/12162503/47d7271a0f27/fphar-16-1587560-g011.jpg

相似文献

[1]
Functionalized turmeric nanovesicles for precision delivery of doxorubicin in colorectal carcinoma treatment.

Front Pharmacol. 2025-5-30

[2]
Tuftsin-Bearing Liposomes Co-Encapsulated with Doxorubicin and Curcumin Efficiently Inhibit EAC Tumor Growth in Mice.

Int J Nanomedicine. 2020-12-31

[3]
Dual pH/reduction-responsive hybrid polymeric micelles for targeted chemo-photothermal combination therapy.

Acta Biomater. 2018-5-17

[4]
EGFR-targeted multifunctional polymersomal doxorubicin induces selective and potent suppression of orthotopic human liver cancer in vivo.

Acta Biomater. 2017-12

[5]
CXCR4-Targeted Macrophage-Derived Biomimetic Hybrid Vesicle Nanoplatform for Enhanced Cancer Therapy through Codelivery of Manganese and Doxorubicin.

ACS Appl Mater Interfaces. 2024-4-10

[6]
A potent multifunctional ZIF-8 nanoplatform developed for colorectal cancer therapy by triple-delivery of chemo/radio/targeted therapy agents.

J Mater Chem B. 2024-1-24

[7]
Development and Evaluation of Reconstructed Nanovesicles from Turmeric for Multifaceted Obesity Intervention.

ACS Nano. 2024-8-27

[8]
Targeted doxorubicin-loaded mesenchymal stem cells-derived exosomes as a versatile platform for fighting against colorectal cancer.

Life Sci. 2020-8-31

[9]
Turmeric-derived nanovesicles as novel nanobiologics for targeted therapy of ulcerative colitis.

Theranostics. 2022

[10]
Tumor-derived extracellular vesicles for the active targeting and effective treatment of colorectal tumors .

Drug Deliv. 2022-12

本文引用的文献

[1]
Co-delivery of doxorubicin-dihydroartemisinin prodrug/TEPP-46 nano-liposomes for improving antitumor and decreasing cardiotoxicity in B16-F10 tumor-bearing mice.

Colloids Surf B Biointerfaces. 2024-9

[2]
Plant Extracellular Vesicles: Current Landscape and Future Directions.

Plants (Basel). 2023-12-12

[3]
Plant exosome-like nanovesicles derived from sesame leaves as carriers for luteolin delivery: Molecular docking, stability and bioactivity.

Food Chem. 2024-4-16

[4]
Plant exosome nanovesicles (PENs): green delivery platforms.

Mater Horiz. 2023-10-2

[5]
An enzyme-based system for extraction of small extracellular vesicles from plants.

Sci Rep. 2023-8-25

[6]
Food-derived extracellular vesicles: natural nanocarriers for active phytoconstituents in new functional food.

Crit Rev Food Sci Nutr. 2024-11

[7]
Phytochemicals and Cancer Treatment: Cell-Derived and Biomimetic Vesicles as Promising Carriers.

Pharmaceutics. 2023-5-9

[8]
Celery ( L.) Exosome-like Nanovesicles as a New-Generation Chemotherapy Drug Delivery Platform against Tumor Proliferation.

J Agric Food Chem. 2023-6-7

[9]
Substances of Natural Origin in Medicine: Plants vs. Cancer.

Cells. 2023-3-23

[10]
Plant-Derived Extracellular Vesicles as a Delivery Platform for RNA-Based Vaccine: Feasibility Study of an Oral and Intranasal SARS-CoV-2 Vaccine.

Pharmaceutics. 2023-3-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索