González-Revuelta Daniel, Fallanza Marcos, Ortiz Alfredo, Gorri Daniel
Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Av. de los Castros s/n, Santander 39005, Spain.
ACS Omega. 2025 May 29;10(22):22813-22824. doi: 10.1021/acsomega.4c11696. eCollection 2025 Jun 10.
Oxygen and nitrogen are two valuable and widely used products in industries, medical applications, and the food sector, for instance, so they present a significant market opportunity. Traditional methods to separate these gases are very energy-intensive. Therefore, in a world moving toward energy sustainability, membrane technology offers a more sustainable alternative. The aim of this work is to develop polymeric membranes with a hollow fiber configuration using Matrimid and ZIF-8 as fillers to improve the separation performance. As a first step, planar membranes with varying ZIF-8 content (0-20 wt %) were prepared using the casting solvent evaporation technique to determine the optimal Matrimid/ZIF-8 ratio. Subsequently, hollow fiber membranes of Matrimid and Matrimid/ZIF-8 were fabricated via the spinning method. The novelty of this work lies in incorporating ZIF-8 into Matrimid membranes in a hollow fiber configuration, as it is known that the inclusion of fillers in polymeric membranes allows improvements in their performance. Nevertheless, their production is quite challenging. The flat-sheet membranes prepared have shown that inclusion of ZIF-8 in Matrimid improves its O/N selectivity by one point and that 5 wt % loading is the optimal point to see this enhancement. The same effect was observed in hollow fiber membranes, reaching an oxygen permeance of 2.16 GPU and an O/N selectivity of around 6 (30 °C) for the Matrimid/ZIF-8 membrane, with a dense layer thickness of around 2 μm. All of these results were compared with those reported in the literature for the O/N separation. Additionally, the impact of feed composition variations on membrane performance was analyzed.
例如,氧气和氮气是工业、医疗应用及食品领域中两种有价值且广泛使用的产品,因此它们呈现出巨大的市场机遇。分离这些气体的传统方法能耗极大。所以,在一个朝着能源可持续性发展的世界里,膜技术提供了一种更具可持续性的选择。这项工作的目的是使用Matrimid和ZIF - 8作为填料来开发具有中空纤维结构的聚合物膜,以提高分离性能。第一步,采用流延溶剂蒸发技术制备了ZIF - 8含量不同(0 - 20 wt%)的平板膜,以确定最佳的Matrimid/ZIF - 8比例。随后,通过纺丝法制备了Matrimid和Matrimid/ZIF - 8的中空纤维膜。这项工作的新颖之处在于将ZIF - 8以中空纤维结构纳入Matrimid膜中,因为众所周知,在聚合物膜中加入填料可以改善其性能。然而,它们的生产颇具挑战性。所制备的平板膜表明,在Matrimid中加入ZIF - 8可使其氧气/氮气选择性提高1个点,且5 wt%的负载量是实现这种增强的最佳点。在中空纤维膜中也观察到了相同的效果,对于Matrimid/ZIF - 8膜,在30℃时氧气渗透率达到2.16 GPU,氧气/氮气选择性约为6,致密层厚度约为2μm。所有这些结果都与文献中报道的氧气/氮气分离结果进行了比较。此外,还分析了进料组成变化对膜性能的影响。