Ke Shuai, Wang Bo, Liu Ganggang, Huang Wei, Gong Yubing, Pan Kailin
Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology Guilin 541004 China
Guizhou Equipment Manufacturing Polytechnic Guiyang 551400 China.
RSC Adv. 2025 Jun 16;15(25):20220-20232. doi: 10.1039/d5ra01568e. eCollection 2025 Jun 10.
This study employs density functional theory (DFT) to investigate three common free radical scavenging mechanisms (hydrogen atom transfer (HAT), single electron transfer proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET)) in UiO-66-(OH) and UiO-66-NH metal-organic framework (MOF) nanoparticles under gas, benzene and aqueous phase conditions. The reaction processes between UiO-66-(OH)/UiO-66-NH and hydroxyl radicals (˙OH) were simulated to elucidate detailed radical capture pathways, and the computational results were validated by macroscopic DPPH radical scavenging experiments. The results indicate that: (1) among the three mechanisms, HAT consistently exhibits the lowest bond dissociation energy across all phases, suggesting MOF nanoparticles preferentially undergo hydrogen atom transfer over electron transfer during radical scavenging; (2) compared to gas phase and nonpolar solvent (benzene), polar solvent (water) significantly lowers the energy barriers for both electron transfer and hydrogen transfer, thus enhancing reactivity across all mechanisms; (3) UiO-66-(OH) exhibits a radical scavenging rate constant of 1.0 × 10 M s, higher than 7.63 × 10 M s for UiO-66-NH; (4) DPPH assays reveal that UiO-66-(OH) exhibits an 8% greater radical scavenging efficiency than UiO-66-NH, in agreement with DFT predictions and confirming the antioxidative benefit of hydroxyl functionalization. This study proposes a combined DFT and experimental screening workflow for radical scavengers, offering an efficient and economical approach to rapidly identify novel MOF-based radioprotective radical scavengers.
本研究采用密度泛函理论(DFT),研究了UiO - 66-(OH)和UiO - 66-NH金属有机框架(MOF)纳米颗粒在气相、苯相和水相条件下的三种常见自由基清除机制(氢原子转移(HAT)、单电子转移质子转移(SET-PT)和顺序质子损失电子转移(SPLET))。模拟了UiO - 66-(OH)/UiO - 66-NH与羟基自由基(˙OH)之间的反应过程,以阐明详细的自由基捕获途径,并通过宏观DPPH自由基清除实验验证了计算结果。结果表明:(1)在这三种机制中,HAT在所有相中始终表现出最低的键解离能,这表明MOF纳米颗粒在自由基清除过程中优先进行氢原子转移而非电子转移;(2)与气相和非极性溶剂(苯)相比,极性溶剂(水)显著降低了电子转移和氢转移的能垒,从而提高了所有机制的反应活性;(3)UiO - 66-(OH)的自由基清除速率常数为1.0×10 M s,高于UiO - 66-NH的7.63×10 M s;(4)DPPH分析表明,UiO - 66-(OH)的自由基清除效率比UiO - 66-NH高8%,这与DFT预测一致,并证实了羟基官能化的抗氧化益处。本研究提出了一种结合DFT和实验筛选自由基清除剂的工作流程,为快速识别新型基于MOF的辐射防护自由基清除剂提供了一种高效且经济的方法。