Kumar Roshan, Sykes Delawrence J, Band Victor I, Schaller Megan L, Patel Romel, Vitvitsky Victor, Sajjakulnukit Peter, Singhal Rashi, Wong Harrison K A, Hourigan Suchitra K, Ichinose Fumito, Lyssiotis Costas A, Shah Yatrik M, Banerjee Ruma
Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109.
Department of Biology, Berry College, Mount Berry, GA 30149.
Proc Natl Acad Sci U S A. 2025 Jun 24;122(25):e2503677122. doi: 10.1073/pnas.2503677122. Epub 2025 Jun 17.
The host-microbiome interface is rich in metabolite exchanges and exquisitely sensitive to diet. Hydrogen sulfide (HS) is present at high concentrations at this interface and is a product of both microbial and host metabolism. The mitochondrial enzyme, sulfide quinone oxidoreductase (SQOR), couples HS detoxification to oxidative phosphorylation; its inherited deficiency presents as Leigh disease. Since an estimated two-thirds of systemic HS metabolism originates in the gut, it raises questions as to whether impaired sulfide clearance in this compartment contributes to disease and whether it can be modulated by dietary sulfur content. In this study, we report that SQOR deficiency confined to murine intestinal epithelial cells perturbs colon bioenergetics that is reversed by antibiotics, revealing a significant local contribution of microbial HS to host physiology. We also find that a 2.5-fold higher methionine intake, mimicking the difference between animal and plant proteins, synergizes with intestinal SQOR deficiency to adversely impact colon architecture and alter microbiome composition. In serum, increased thiosulfate, a biomarker of HS oxidation, reveals that intestinal SQOR deficiency combined with higher dietary methionine affects sulfide metabolism globally and perturbs energy metabolism as indicated by higher ketone bodies. The mice exhibit lower exploratory locomotor activity while brain MRI reveals an atypical reduction in ventricular volume, which is associated with lower aquaporin 1 that is important for cerebrospinal fluid secretion. Our study reveals the dynamic interaction between dietary sulfur intake and sulfide metabolism at the host-microbe interface, impacting gut health, and the potential for lower dietary methionine intake to modulate pathology.
宿主-微生物组界面存在丰富的代谢物交换,且对饮食极为敏感。硫化氢(HS)在该界面以高浓度存在,是微生物和宿主代谢的产物。线粒体酶硫化物醌氧化还原酶(SQOR)将HS解毒与氧化磷酸化偶联;其遗传性缺陷表现为 Leigh 病。由于估计全身 HS 代谢的三分之二起源于肠道,这就引发了一个问题,即该区域硫化物清除受损是否会导致疾病,以及它是否可以通过饮食中的硫含量来调节。在本研究中,我们报告局限于小鼠肠道上皮细胞的 SQOR 缺陷会扰乱结肠生物能量学,而抗生素可使其逆转,这揭示了微生物 HS 对宿主生理学有显著的局部贡献。我们还发现,蛋氨酸摄入量高出 2.5 倍,模拟动物蛋白和植物蛋白之间的差异,与肠道 SQOR 缺陷协同作用,对结肠结构产生不利影响并改变微生物组组成。在血清中,作为 HS 氧化生物标志物的硫代硫酸盐增加,表明肠道 SQOR 缺陷与较高的饮食蛋氨酸相结合会影响全球范围内的硫化物代谢,并如较高的酮体所示扰乱能量代谢。这些小鼠表现出较低的探索性运动活动,而脑部 MRI 显示脑室体积出现非典型减小,这与对脑脊液分泌很重要的水通道蛋白 1 减少有关。我们的研究揭示了宿主-微生物界面饮食硫摄入与硫化物代谢之间的动态相互作用,影响肠道健康,以及降低饮食蛋氨酸摄入量调节病理状况的潜力。