文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习模型减少乳腺影像报告和数据系统(BI-RADS)4类病变的不必要活检

Reducing unnecessary biopsies of BI-RADS 4 lesions based on a deep learning model for mammography.

作者信息

Yang Yuting, Liao Tingting, Lin Xiaohui, Ouyang Rushan, Cao Zhenjie, Hu Jingtao, Ma Jie

机构信息

Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China.

Department of Radiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.

出版信息

Front Oncol. 2025 Jun 3;15:1543553. doi: 10.3389/fonc.2025.1543553. eCollection 2025.


DOI:10.3389/fonc.2025.1543553
PMID:40530010
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12170291/
Abstract

OBJECTIVE: In this study, we aimed to explore the diagnostic value of a deep learning (DL) model based on mammography for Breast Imaging Reporting and Data System (BI-RADS) 4 lesions and to reduce unnecessary breast biopsies. METHODS: We retrospectively collected clinical and imaging data of 557 BI-RADS 4 lesions (304 benign lesions, 195 malignant lesions, and 58 high-risk lesions which have risk of developing malignancy) obtained by mammography at Shenzhen People's Hospital and Luohu People's Hospital from January 2020 to June 2022. The DL model was constructed to predict the pathological classifications of these lesions, calculated its sensitivity, specificity, and accuracy, and evaluated its diagnostic performance using receiver operating characteristic curve and area under the curve (AUC). RESULTS: This study included 557 patients with BI-RADS 4 lesions, including 381 patients (68.40%) with BI-RADS 4A, 106 patients (19.03%) with BI-RADS 4B, and 70 patients (12.57%) with BI-RADS 4C. For BI-RADS categories 4A, 4B, and 4C lesions, 70.9%, 27.4%, and 7.1% were respectively confirmed as benign through biopsy, surgical pathology, or follow-up. The DL model demonstrated high diagnostic performance in identifying BI-RADS 4 lesions, achieving a sensitivity of 81.0%, specificity of 76.9%, accuracy of 78.8%, and an AUC of 0.790. We found that our DL model could avoid unnecessary biopsies for BI-RADS 4 lesions by 40.6% in our included patients, reducing unnecessary biopsies for BI-RADS 4A, 4B, and 4C lesions by 55.1%, 18.9%, and 4.29%, respectively. CONCLUSION: Our DL model for classifying BI-RADS 4 lesions can accurately identify benign and high-risk lesions that do not necessitate biopsy, further enhancing the safety and convenience for patients.

摘要

目的:在本研究中,我们旨在探索基于乳腺钼靶的深度学习(DL)模型对乳腺影像报告和数据系统(BI-RADS)4类病变的诊断价值,并减少不必要的乳腺活检。 方法:我们回顾性收集了2020年1月至2022年6月在深圳市人民医院和罗湖区人民医院通过乳腺钼靶检查获得的557例BI-RADS 4类病变(304例良性病变、195例恶性病变和58例有恶变风险的高危病变)的临床和影像数据。构建DL模型以预测这些病变的病理分类,计算其敏感性、特异性和准确性,并使用受试者操作特征曲线和曲线下面积(AUC)评估其诊断性能。 结果:本研究纳入了557例BI-RADS 4类病变患者,其中381例(68.40%)为BI-RADS 4A类,106例(19.03%)为BI-RADS 4B类,70例(12.57%)为BI-RADS 4C类。对于BI-RADS 4A、4B和4C类病变,分别有70.9%、27.4%和7.1%通过活检、手术病理或随访被确认为良性。DL模型在识别BI-RADS 4类病变方面表现出较高的诊断性能,敏感性为81.0%,特异性为76.9%,准确性为78.8%,AUC为0.790。我们发现,在纳入的患者中,我们的DL模型可以避免40.6%的BI-RADS 4类病变进行不必要的活检,分别减少BI-RADS 4A、4B和4C类病变不必要活检的比例为55.1%、18.9%和4.29%。 结论:我们用于对BI-RADS 4类病变进行分类的DL模型可以准确识别无需活检的良性和高危病变,进一步提高患者的安全性和便利性。

相似文献

[1]
Reducing unnecessary biopsies of BI-RADS 4 lesions based on a deep learning model for mammography.

Front Oncol. 2025-6-3

[2]
Using a Large Language Model for Breast Imaging Reporting and Data System Classification and Malignancy Prediction to Enhance Breast Ultrasound Diagnosis: Retrospective Study.

JMIR Med Inform. 2025-6-11

[3]
Value of deep learning model for predicting Breast Imaging Reporting and Data System 3 and 4A lesions on mammography.

Quant Imaging Med Surg. 2025-5-1

[4]
Deep learning-assisted prostate cancer detection on bi-parametric MRI: minimum training data size requirements and effect of prior knowledge.

Eur Radiol. 2022-4

[5]
Adapting Safety Plans for Autistic Adults with Involvement from the Autism Community.

Autism Adulthood. 2025-5-28

[6]
Molecular feature-based classification of retroperitoneal liposarcoma: a prospective cohort study.

Elife. 2025-5-23

[7]
Prognostic factors for return to work in breast cancer survivors.

Cochrane Database Syst Rev. 2025-5-7

[8]
St Andrews Referral Delay in Skin Cancer (StARDISC): a study of keratinocyte skin cancer time to treatment, growth, invasiveness, British Association of Dermatologists risk factors and excision adequacy.

Br J Dermatol. 2025-6-20

[9]
Novel study on the prediction of BI-RADS 4A positive lesions in mammography using deep learning technology and clinical factors.

Quant Imaging Med Surg. 2024-12-5

[10]
An Approach for Differential Diagnosis of Breast Tumors by ctDNA Methylation Sequencing.

Cancer Med. 2025-6

本文引用的文献

[1]
Spectral analysis enhanced net (SAE-Net) to classify breast lesions with BI-RADS category 4 or higher.

Ultrasonics. 2024-9

[2]
Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.

CA Cancer J Clin. 2024

[3]
A Deep Learning Decision Support Tool to Improve Risk Stratification and Reduce Unnecessary Biopsies in BI-RADS 4 Mammograms.

Radiol Artif Intell. 2023-8-9

[4]
Reducing the number of unnecessary biopsies for mammographic BI-RADS 4 lesions through a deep transfer learning method.

BMC Med Imaging. 2023-6-13

[5]
The Clinical Application of Artificial Intelligence Assisted Contrast-Enhanced Ultrasound on BI-RADS Category 4 Breast Lesions.

Acad Radiol. 2023-9

[6]
Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams.

Nat Commun. 2021-9-24

[7]
MommiNet-v2: Mammographic multi-view mass identification networks.

Med Image Anal. 2021-10

[8]
Deep Learning-Based Artificial Intelligence for Mammography.

Korean J Radiol. 2021-8

[9]
A deep learning model integrating mammography and clinical factors facilitates the malignancy prediction of BI-RADS 4 microcalcifications in breast cancer screening.

Eur Radiol. 2021-8

[10]
Changes in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader study.

Lancet Digit Health. 2020-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索