Suppr超能文献

驱动藻胆青素结合蛋白中绿色/红色吸收的不同原色机制。

Distinct Protochromic Mechanisms Driving Green/Red Absorption in Phycocyanobilin-Binding Proteins.

作者信息

Noji Tomoyasu, Saito Keisuke, Ishikita Hiroshi

机构信息

Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.

Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.

出版信息

Biochemistry. 2025 Jul 1;64(13):2823-2833. doi: 10.1021/acs.biochem.4c00870. Epub 2025 Jun 18.

Abstract

RcaE, a phycocyanobilin (PCB)-binding protein, undergoes a reversible structural conversion, shifting light absorption between red (Pr-state) and green (Pg-state). Using a quantum mechanical/molecular mechanical approach combined with a linear Poisson-Boltzmann equation, we reveal the molecular mechanisms underlying this 130 nm blue shift. The experimentally measured Pg-RcaE absorption wavelength is reproduced only when ring B of PCB is deprotonated. While the low-dielectric chromophore environment remains unchanged during the Pr-to-Pg conversion, Lys261 deprotonation in Pg-RcaE is driven by the loss of key electrostatic interactions, specifically the loss of salt bridges with PCB propionic groups. Unlike Slr1393g3, where a 110 nm blue shift arises from PCB conformational changes, RcaE employs a distinct mechanism, leveraging proton-mediated electrostatic changes while maintaining a low-dielectric environment. This Pr-to-Pg conversion is triggered by ring B deprotonation via Glu217, facilitated by water molecules forming a Grotthuss-like proton transfer pathway. This unique strategy achieves efficient photochromic switching and a large spectral shift without PCB structural rearrangements.

摘要

RcaE是一种与藻蓝胆素(PCB)结合的蛋白质,会发生可逆的结构转换,在红色(Pr态)和绿色(Pg态)之间改变光吸收。通过将量子力学/分子力学方法与线性泊松-玻尔兹曼方程相结合,我们揭示了这种130纳米蓝移背后的分子机制。只有当PCB的B环去质子化时,才能重现实验测量的Pg-RcaE吸收波长。虽然在从Pr态到Pg态的转换过程中,低介电发色团环境保持不变,但Pg-RcaE中的Lys261去质子化是由关键静电相互作用的丧失驱动的,特别是与PCB丙酸基团盐桥的丧失。与Slr1393g3不同,其110纳米的蓝移源于PCB的构象变化,RcaE采用了一种独特的机制,利用质子介导的静电变化,同时保持低介电环境。这种从Pr态到Pg态的转换是由Glu217导致的B环去质子化触发的,水分子形成类似Grotthuss的质子转移途径促进了这一过程。这种独特的策略实现了高效的光致变色切换和大的光谱位移,而无需PCB的结构重排。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验