Peng Zi-Chen, Zeng Fu-Rong, Zeng Zhi-Wei, Su Peng-Gang, Tang Pei-Jie, Liu Bo-Wen, Zhang Yao, Wang Yu-Zhong, Zhao Hai-Bo
The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Advanced Polymer Materials, College of Chemistry, Sichuan University, Chengdu, 610064, China.
School of Chemical Engineering, Sichuan University, Chengdu, 610064, China.
Adv Mater. 2025 Sep;37(35):e2505224. doi: 10.1002/adma.202505224. Epub 2025 Jun 19.
Aerogels have emerged as promising passive radiant cooling materials, offering a sustainable solution to mitigate global warming. However, the energy- and resource-intensive fabrication processes and insufficient environmental durability of current aerogels pose significant challenges for industrial scalability and long-term energy-saving applications. Here, a scalable low-carbon ambient-dried foam-like aerogel (GMSx) with integrated radiative cooling and fire/harsh-conditions resistance is reported. Thermoresponsive physicochemical interactions among gellan gum, melamine-formaldehyde resin, and fumed silica facilitate the transformation of scalable emulsion-templated hydrogels into structurally ordered GMSx via a green ambient-drying process without complex freezing and solvent exchange. The foam-like aerogel exhibits high porosity (96.2%) and record specific modulus (323 m/s). Optimized optical properties with 93% solar reflectance and 94% infrared emissivity yield subambient cooling of 4.8 °C. Crucially, the robust crosslinked networks impart remarkable durability under extreme conditions, including exposure to hot water, strong acids/alkalis (pH 1-13), various chemicals, and 1300 °C flame. Furthermore, GMSx can be customized into various shapes via extrusion or spraying techniques and applied as protective coatings using scalable brushing or dipping methods, accommodating diverse substrate geometries. This work overcomes critical scalable green fabrication and durability challenges in passive cooling aerogels, demonstrating practical potential for energy-efficient thermal management in harsh environments.
气凝胶已成为很有前景的被动辐射冷却材料,为缓解全球变暖提供了一种可持续的解决方案。然而,当前气凝胶的能源和资源密集型制造工艺以及环境耐久性不足,对工业规模化和长期节能应用构成了重大挑战。在此,报道了一种具有集成辐射冷却和耐火/耐恶劣条件性能的可规模化低碳环境干燥泡沫状气凝胶(GMSx)。结冷胶、三聚氰胺 - 甲醛树脂和气相二氧化硅之间的热响应物理化学相互作用,通过绿色环境干燥过程,促进了可规模化乳液模板水凝胶向结构有序的GMSx的转变,无需复杂的冷冻和溶剂交换。这种泡沫状气凝胶具有高孔隙率(96.2%)和创纪录的比模量(323米/秒)。优化后的光学性能具有93%的太阳反射率和94%的红外发射率,产生4.8℃的亚环境冷却效果。至关重要的是,坚固的交联网络在极端条件下具有显著的耐久性,包括暴露于热水、强酸/强碱(pH值1 - 13)、各种化学品和1300℃火焰中。此外,GMSx可以通过挤压或喷涂技术定制成各种形状,并使用可规模化的刷涂或浸渍方法作为保护涂层应用,以适应各种基材几何形状。这项工作克服了被动冷却气凝胶在可规模化绿色制造和耐久性方面的关键挑战,展示了在恶劣环境中进行节能热管理的实际潜力。