Yang Ziqi, Luo Yiran, Yang Zaiqi, Liu Zheng, Li Meihua, Wu Xiao, Chen Like, Xin Wenqiang
Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
Department of Neurosurgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.
Neural Regen Res. 2025 Jun 19. doi: 10.4103/NRR.NRR-D-24-01422.
Mitochondrial dysfunction has emerged as a critical factor in the etiology of various neurodevelopmental disorders, including autism spectrum disorders, attention-deficit/hyperactivity disorder, and Rett syndrome. Although these conditions differ in clinical presentation, they share fundamental pathological features that may stem from abnormal mitochondrial dynamics and impaired autophagic clearance, which contribute to redox imbalance and oxidative stress in neurons. This review aimed to elucidate the relationship between mitochondrial dynamics dysfunction and neurodevelopmental disorders. Mitochondria are highly dynamic organelles that undergo continuous fusion and fission to meet the substantial energy demands of neural cells. Dysregulation of these processes, as observed in certain neurodevelopmental disorders, causes accumulation of damaged mitochondria, exacerbating oxidative damage and impairing neuronal function. The phosphatase and tensin homolog-induced putative kinase 1/E3 ubiquitin-protein ligase pathway is crucial for mitophagy, the process of selectively removing malfunctioning mitochondria. Mutations in genes encoding mitochondrial fusion proteins have been identified in autism spectrum disorders, linking disruptions in the fusion-fission equilibrium to neurodevelopmental impairments. Additionally, animal models of Rett syndrome have shown pronounced defects in mitophagy, reinforcing the notion that mitochondrial quality control is indispensable for neuronal health. Clinical studies have highlighted the importance of mitochondrial disturbances in neurodevelopmental disorders. In autism spectrum disorders, elevated oxidative stress markers and mitochondrial DNA deletions indicate compromised mitochondrial function. Attention-deficit/hyperactivity disorder has also been associated with cognitive deficits linked to mitochondrial dysfunction and oxidative stress. Moreover, induced pluripotent stem cell models derived from patients with Rett syndrome have shown impaired mitochondrial dynamics and heightened vulnerability to oxidative injury, suggesting the role of defective mitochondrial homeostasis in these disorders. From a translational standpoint, multiple therapeutic approaches targeting mitochondrial pathways show promise. Interventions aimed at preserving normal fusion-fission cycles or enhancing mitophagy can reduce oxidative damage by limiting the accumulation of defective mitochondria. Pharmacological modulation of mitochondrial permeability and upregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, an essential regulator of mitochondrial biogenesis, may also ameliorate cellular energy deficits. Identifying early biomarkers of mitochondrial impairment is crucial for precision medicine, since it can help clinicians tailor interventions to individual patient profiles and improve prognoses. Furthermore, integrating mitochondria-focused strategies with established therapies, such as antioxidants or behavioral interventions, may enhance treatment efficacy and yield better clinical outcomes. Leveraging these pathways could open avenues for regenerative strategies, given the influence of mitochondria on neuronal repair and plasticity. In conclusion, this review indicates mitochondrial homeostasis as a unifying therapeutic axis within neurodevelopmental pathophysiology. Disruptions in mitochondrial dynamics and autophagic clearance converge on oxidative stress, and researchers should prioritize validating these interventions in clinical settings to advance precision medicine and enhance outcomes for individuals affected by neurodevelopmental disorders.
线粒体功能障碍已成为各种神经发育障碍病因中的关键因素,包括自闭症谱系障碍、注意力缺陷多动障碍和雷特综合征。尽管这些病症在临床表现上有所不同,但它们具有共同的基本病理特征,可能源于线粒体动力学异常和自噬清除受损,这会导致神经元中的氧化还原失衡和氧化应激。本综述旨在阐明线粒体动力学功能障碍与神经发育障碍之间的关系。线粒体是高度动态的细胞器,会不断进行融合和裂变以满足神经细胞大量的能量需求。在某些神经发育障碍中观察到的这些过程的失调会导致受损线粒体的积累,加剧氧化损伤并损害神经元功能。磷酸酶和张力蛋白同源物诱导的假定激酶1/E3泛素蛋白连接酶途径对于线粒体自噬(选择性清除功能失调线粒体的过程)至关重要。在自闭症谱系障碍中已发现编码线粒体融合蛋白的基因突变,将融合-裂变平衡的破坏与神经发育障碍联系起来。此外,雷特综合征的动物模型显示出线粒体自噬存在明显缺陷,强化了线粒体质量控制对神经元健康不可或缺的观念。临床研究强调了线粒体紊乱在神经发育障碍中的重要性。在自闭症谱系障碍中,氧化应激标志物升高和线粒体DNA缺失表明线粒体功能受损。注意力缺陷多动障碍也与与线粒体功能障碍和氧化应激相关的认知缺陷有关。此外,源自雷特综合征患者的诱导多能干细胞模型显示出线粒体动力学受损以及对氧化损伤的易感性增加,表明线粒体稳态缺陷在这些疾病中的作用。从转化医学的角度来看,多种针对线粒体途径的治疗方法显示出前景。旨在维持正常融合-裂变循环或增强线粒体自噬的干预措施可以通过限制缺陷线粒体的积累来减少氧化损伤。线粒体通透性的药理学调节以及过氧化物酶体增殖物激活受体γ共激活因子1-α(线粒体生物发生的重要调节因子)的上调也可能改善细胞能量缺陷。识别线粒体损伤的早期生物标志物对于精准医学至关重要,因为它可以帮助临床医生根据个体患者情况调整干预措施并改善预后。此外,将以线粒体为重点的策略与既定疗法(如抗氧化剂或行为干预)相结合,可能会提高治疗效果并产生更好的临床结果。鉴于线粒体对神经元修复和可塑性的影响,利用这些途径可能为再生策略开辟道路。总之,本综述表明线粒体稳态是神经发育病理生理学中的一个统一治疗轴。线粒体动力学和自噬清除的破坏会导致氧化应激,研究人员应优先在临床环境中验证这些干预措施,以推进精准医学并改善受神经发育障碍影响个体的治疗效果。
2025-1
Arch Ital Urol Androl. 2025-6-30
Psychopharmacol Bull. 2024-7-8
Psychiatriki. 2025-5-14
Autism Adulthood. 2025-2-5
Cochrane Database Syst Rev. 2008-7-16