Zhou Jingwen, Liu Fu, Xu Zhihang, Yin Jian-An, Guo Liang, Hao Fengkun, Wang Yunhao, Xiong Yuecheng, Zhou Xichen, Wang Cheng, Ma Yangbo, Meng Xiang, Lu Pengyi, Yin Jinwen, Zhang An, Wang Jie, Ye Chenliang, Li Qiang, Ling Chongyi, Chen Hsiao-Chien, Chen Hao Ming, Zhu Ye, Lu Jian, Fan Zhanxi
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.
J Am Chem Soc. 2025 Jul 2;147(26):23226-23238. doi: 10.1021/jacs.5c07490. Epub 2025 Jun 19.
Ammonia (NH) electrosynthesis from nitrate-polluted wastewater is a challenging but meaningful technique for the future green chemical and sewage disposal industries. The dominant difficulties lie in how to realize a highly selective, low-overpotential, and rapid electrocatalytic nitrate reduction reaction (NORR). Herein, we propose a catalyst crystal phase and electrode/electrolyte interface dual engineering strategy to enhance the neutral NORR performance of ultrathin alloy nanostructures. The obtained unconventional 2H-RhCu not only shows higher intrinsic NH selectivity than its traditional face-centered cubic and amorphous/crystalline counterparts but also delivers superior Faradaic efficiency and yield rate toward NH in K-based electrolyte over those in Li/Na-based ones. studies and theoretical calculations reveal that the faster generation/conversion kinetics of key intermediates, weaker N-N recombination, and unique *NO adsorption configuration at electrode/electrolyte interfaces account for this significant enhancement. In addition, rechargeable Zn-nitrate/methanol flow batteries with 2H-RhCu were constructed as a demonstration of potential applications.
从硝酸盐污染的废水中电合成氨(NH₃),对于未来的绿色化学和污水处理行业来说,是一项具有挑战性但却意义重大的技术。主要困难在于如何实现高选择性、低过电位以及快速的电催化硝酸盐还原反应(NORR)。在此,我们提出一种催化剂晶相和电极/电解质界面双工程策略,以增强超薄合金纳米结构的中性NORR性能。所获得的非常规2H-RhCu不仅比其传统的面心立方和非晶/晶体对应物表现出更高的本征NH₃选择性,而且在基于K的电解质中,相对于基于Li/Na的电解质,对NH₃具有更高的法拉第效率和产率。研究和理论计算表明,关键中间体更快的生成/转化动力学、较弱的N-N重组以及电极/电解质界面处独特的*NO吸附构型是这种显著增强的原因。此外,构建了具有2H-RhCu的可充电锌-硝酸盐/甲醇液流电池,以展示其潜在应用。