Urca Tomer, Lehmann Fritz-Olaf
Department of Animal Physiology, Institute of Biosciences, University of Rostock, 18059 Rostock, Germany.
iScience. 2025 May 22;28(6):112730. doi: 10.1016/j.isci.2025.112730. eCollection 2025 Jun 20.
Vision in miniature insects is constrained by an extremely small number of ommatidia and brain cells available for image processing. Here, we explore how one millimeter whiteflies cope with these limits during vision-mediated locomotion by linking micro-tomographical reconstructions of the eye to changes in visual gaze in maneuvering flight. The split eye design accommodates two flat arrays with 31 and 42 ommatidia at 53° mean angular spacing, which limits panoramic view. Low optical resolution with 14.4° interommatidial angle hampers object recognition and visual motion detection needed for body posture stability reflexes. During maneuvering, mean gaze direction of both eye sections differs in elevation and azimuth depending on yaw, pitch, and roll angles. Dorsal and ventral eye sections thus receive visual information from specific areas in the visual environment. Collectively, splitting the eye into separate ommatidia arrays potentially allows whiteflies to maintain elaborate vision-controlled flight behaviors even at reduced visual capacity.
微型昆虫的视觉受到用于图像处理的小眼和脑细胞数量极少的限制。在此,我们通过将眼睛的显微断层扫描重建与机动飞行中视觉凝视的变化相联系,探索体长一毫米的粉虱在视觉介导的运动过程中如何应对这些限制。这种分眼设计容纳了两个扁平阵列,分别有31个和42个小眼,平均角间距为53°,这限制了全景视野。小眼间角度为14.4°,光学分辨率较低,妨碍了身体姿势稳定反射所需的物体识别和视觉运动检测。在机动过程中,两个眼区的平均凝视方向在仰角和方位角上因偏航、俯仰和滚转角而异。因此,背侧和腹侧眼区从视觉环境中的特定区域接收视觉信息。总的来说,将眼睛分成单独的小眼阵列可能使粉虱即使在视觉能力下降的情况下也能维持复杂的视觉控制飞行行为。