Sun Zi-Xuan, Zhou Changkai, Chen Zhijie, Zeng Yu, Sun Tao, Dong Xudong, Yang Lijun, Wang Xizhang, Wu Qiang, Huang Hongwen, He Le, Hu Zheng
State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China.
Angew Chem Int Ed Engl. 2025 Aug 18;64(34):e202508090. doi: 10.1002/anie.202508090. Epub 2025 Jun 26.
The persistent trade-off between catalytic activity and selectivity remains a critical barrier to efficient CO valorization. Herein, we propose a concept of decoupling the activity-selectivity trade-off in the photothermal catalytic reverse water-gas shift (RWGS) reaction by hydrogen spillover-assisted dual-site synergy. This concept is demonstrated through a hybrid catalyst constructed by immobilizing abundant Ru single sites and trace Ru clusters onto high-efficiency photothermal support of N-doped hierarchical carbon nanocages (hNCNC). Theoretical calculations reveal that the Ru─N sites are highly active and selective for the RWGS reaction, contingent on the efficient migration of dissociated *H species to adjacent C atoms of Ru. Importantly, we experimentally confirm that Ru single sites dominate CO hydrogenation to CO, whereas Ru clusters facilitate H₂ activation and supply hydrogen species to adjacent single sites via spillover over hNCNC. Leveraging this synergistic interaction, the hybrid catalyst achieves an exceptional CO production rate of 3.1 mol·g ·h and selectivity over 98%. This mechanism shows universal applicability as demonstrated by the effective promotion of CO hydrogenation of Ru single sites by other typical hydrogen-spillover-active metal clusters, e.g., Pt and Pd clusters. This design concept liberates the potential to overcome the longstanding activity-selectivity trade-off in hydrogenation reactions.
催化活性与选择性之间持续存在的权衡仍然是高效CO资源化利用的关键障碍。在此,我们提出了一种通过氢溢流辅助双位点协同作用来解耦光热催化逆水煤气变换(RWGS)反应中活性-选择性权衡的概念。这一概念通过将大量Ru单原子位点和微量Ru团簇固定在氮掺杂分级碳纳米笼(hNCNC)的高效光热载体上构建的混合催化剂得以证明。理论计算表明,Ru─N位点对RWGS反应具有高活性和选择性,这取决于解离的*H物种向Ru相邻C原子的有效迁移。重要的是,我们通过实验证实,Ru单原子位点主导CO加氢生成CO,而Ru团簇促进H₂活化,并通过在hNCNC上的溢流将氢物种供应给相邻的单原子位点。利用这种协同相互作用,混合催化剂实现了3.1 mol·g⁻¹·h⁻¹的优异CO生成速率和超过98%的选择性。如其他典型的氢溢流活性金属团簇(如Pt和Pd团簇)对Ru单原子位点的CO加氢的有效促进所证明的那样,这种机制具有普遍适用性。这种设计理念释放了克服加氢反应中长期存在的活性-选择性权衡的潜力。