Cimino Amanda, Pat Fiona, Oyebamiji Omolabake, Pferdehirt Lara, Pham Christine T N, Herzog Erik D, Guilak Farshid
Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children - Saint Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA.
Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children - Saint Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
J Control Release. 2025 Sep 10;385:113959. doi: 10.1016/j.jconrel.2025.113959. Epub 2025 Jun 18.
Cells of the body rely on the circadian clock to orchestrate daily changes in physiology that impact both homeostatic and pathological conditions, such as the inflammatory autoimmune disease rheumatoid arthritis (RA). In RA, high levels of proinflammatory cytokines peak early in the morning hours, reflected by daily changes in joint stiffness. Chronotherapy (or circadian medicine) seeks to delivery drugs at optimal times to maximize their efficacy. However, chronotherapy remains a largely unexplored approach for disease modifying, antirheumatic treatment, particularly for cell-based therapies. In this study, we developed autonomous chronogenetic gene circuits that produce the biologic drug interleukin-1 receptor antagonist (IL-1Ra) with desired phase and amplitude. We compared expression of IL-1Ra from circuits that contained different circadian promoter elements (E'-boxes, D-boxes, or RREs) and their ability to respond to inflammatory challenges in murine pre-differentiated induced pluripotent stem cells (PDiPSC) or engineered cartilage pellets. We confirmed that each circuit reliably peaked at a distinct circadian time over multiple days. Engineered cells generated significant amounts of IL-1Ra on a circadian basis, which protected them from circadian dysregulation and inflammatory damage. These programmable chronogenetic circuits have the potential to align with an individual's circadian rhythm for optimized, self-regulated daily drug delivery.
身体细胞依靠生物钟来协调生理上的日常变化,这些变化会影响稳态和病理状况,比如炎症性自身免疫疾病类风湿性关节炎(RA)。在类风湿性关节炎中,促炎细胞因子的高水平在清晨时段达到峰值,这通过关节僵硬的日常变化得以体现。时间疗法(或生物钟医学)旨在在最佳时间给药,以最大化药物疗效。然而,时间疗法在改善病情的抗风湿治疗中,尤其是在基于细胞的疗法方面,仍是一种很大程度上未被探索的方法。在本研究中,我们开发了自主的生物钟基因回路,其能产生具有所需相位和幅度的生物药物白细胞介素-1受体拮抗剂(IL-1Ra)。我们比较了包含不同生物钟启动子元件(E'-盒、D-盒或RREs)的回路中IL-1Ra的表达情况,以及它们在小鼠预分化诱导多能干细胞(PDiPSC)或工程化软骨微丸中对炎症刺激的反应能力。我们证实,每个回路在多天内都能在特定的生物钟时间可靠地达到峰值。工程化细胞在生物钟基础上产生了大量的IL-1Ra,这保护它们免受生物钟失调和炎症损伤。这些可编程的生物钟基因回路有潜力与个体的生物钟节律同步,以实现优化的、自我调节的每日药物递送。