Li Shaoping, Shen Ruoque, Jiang Jiale, Peng Qiongyan, Chen Xuebing, Dong Jie, Dong Jinwei, Yuan Wenping
School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, 519082, Guangdong, China.
Ocean Energy Research Institute, MingYang Smart Energy Group Limited, Zhongshan, 528437, Guangdong, China.
Sci Data. 2025 Jun 21;12(1):1052. doi: 10.1038/s41597-025-05374-1.
Rice is a staple food for over half the global population and contributes to more than 10% of global anthropogenic methane emissions. Precise mapping of rice distribution in Asia, the primary region for rice cultivation responsible for over 60% of global production, is crucial for monitoring food security and greenhouse gas emissions. However, due to cloud cover impacts on optical remote sensing imagery, there is still a lack of long-term, high-resolution rice distribution datasets for the entire Asian region. This study develops the Global Crop Dataset-Rice (GCD-Rice) dataset to map rice cultivation across three seasons in 16 Asian countries from 1990 to 2023. Using Landsat and Sentinel-1 datasets, along with a phenological approach and a random forest model, the maps were validated with 258,547 field samples. Results show an average user accuracy of 89.88%, a producer accuracy of 88.52%, and an overall accuracy of 88.85%. Furthermore, comparing with statistical area reveals an overall average R² value of 0.768, a slope of 0.874, and an RMSE of 0.346.
水稻是全球一半以上人口的主食,其产生的甲烷排放量占全球人为甲烷排放总量的10%以上。亚洲是水稻种植的主要地区,其产量占全球总产量的60%以上,精确绘制亚洲水稻分布图对于监测粮食安全和温室气体排放至关重要。然而,由于云层覆盖对光学遥感影像的影响,整个亚洲地区仍然缺乏长期、高分辨率的水稻分布数据集。本研究开发了全球作物数据集-水稻(GCD-Rice)数据集,用于绘制1990年至2023年期间16个亚洲国家三个季节的水稻种植情况。利用陆地卫星和哨兵-1数据集,结合物候学方法和随机森林模型,这些地图通过258,547个实地样本进行了验证。结果显示,平均用户精度为89.88%,生产者精度为88.52%,总体精度为88.85%。此外,与统计面积相比,总体平均R²值为0.768,斜率为0.874,均方根误差为0.346。