文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

百里醌通过调节氧化应激、炎症和细胞凋亡,控制了食用高脂饮食大鼠的肥胖,并增强了其认知和记忆能力。

Thymoquinone controlled obesity and invigorated cognitive and memory performance in rats consuming a high-fat diet via modulating oxidative stress, inflammation and apoptosis.

作者信息

Mostafa Mostafa D, Amer Maggie E, ElKomy Magda A, Othman Azza I, El-Missiry Mohamed A

机构信息

Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt.

出版信息

Sci Rep. 2025 Jun 20;15(1):20171. doi: 10.1038/s41598-025-05716-4.


DOI:10.1038/s41598-025-05716-4
PMID:40542063
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12181254/
Abstract

The current study investigated the mitigating effects of thymoquinone (TQ) against high-fat diet (HFD)-mediated brain injury, cognitive and memory impairment, and the underlying mechanisms. Twenty-four adult male Wistar rats were divided into four groups of six rats each. Rats were fed HFD for 12 weeks to induce obesity. On the 9th week, TQ was administered orally to obese rats for four weeks. The effects of TQ were estimated by neurobehavioral testing, biochemical analysis, DNA damage, molecular docking, and histopathological examination of brains and visceral fat. TQ reduced body weight, body weight gain and adipocyte size, improved hyperlipidemia, and normalized the levels of leptin and adiponectin. TQ significantly attenuated the increase in HbA1c percent and insulin resistance. TQ decreased the accumulation of amyloid-β and tau proteins and improved the levels of neurotransmitters in the brains of obese rats. TQ-treated obese rats showed improved thickening of the pyramidal cell layer in the hippocampus and improved cognitive function and memory impairments. Molecular docking analysis indicated that TQ exhibited a marked affinity for inhibiting binding sites of tau and amyloid-β proteins. Furthermore, TQ controlled oxidative stress and enhanced the Nrf2 expression in the pyramidal cell layer and the activity of HO-1, SOD, and CAT in the brain. The restoration of redox balance by TQ was associated with normalization of inflammatory indicators and alleviation of DNA damage in the brains of HFD-treated animals. These changes contributed to the normalization of mitochondrial apoptotic pathway mediators (p53, Bcl-2, Bax, and caspase-3) and maintained the histological structure of the hippocampus. In conclusion, TQ attenuated brain injury, cognitive impairment, and memory deficit with improvement of body weight gain and metabolic status in obese rats through interrelated biological processes, including regulation of redox balance, inflammatory response, neurotransmitter equilibrium, and regression of DNA injury and apoptosis.

摘要

本研究调查了百里醌(TQ)对高脂饮食(HFD)介导的脑损伤、认知和记忆障碍的缓解作用及其潜在机制。将24只成年雄性Wistar大鼠分为四组,每组6只。给大鼠喂食HFD 12周以诱导肥胖。在第9周,对肥胖大鼠口服TQ,持续四周。通过神经行为测试、生化分析、DNA损伤、分子对接以及对大脑和内脏脂肪的组织病理学检查来评估TQ的作用。TQ降低了体重、体重增加和脂肪细胞大小,改善了高脂血症,并使瘦素和脂联素水平恢复正常。TQ显著减轻了糖化血红蛋白百分比的升高和胰岛素抵抗。TQ减少了肥胖大鼠大脑中淀粉样β蛋白和tau蛋白的积累,并改善了神经递质水平。经TQ处理的肥胖大鼠海马锥体细胞层增厚得到改善,认知功能和记忆障碍也得到改善。分子对接分析表明,TQ对抑制tau蛋白和淀粉样β蛋白的结合位点具有显著亲和力。此外,TQ控制了氧化应激,增强了锥体细胞层中Nrf2的表达以及大脑中HO-1、SOD和CAT的活性。TQ恢复氧化还原平衡与HFD处理动物大脑中炎症指标的正常化以及DNA损伤的减轻有关。这些变化有助于线粒体凋亡途径介质(p53、Bcl-2、Bax和caspase-3)的正常化,并维持海马的组织结构。总之,TQ通过相互关联的生物学过程,包括调节氧化还原平衡、炎症反应、神经递质平衡以及DNA损伤和凋亡的消退,减轻了肥胖大鼠的脑损伤、认知障碍和记忆缺陷,并改善了体重增加和代谢状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/c46e07fbec6f/41598_2025_5716_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/9863107ce0a4/41598_2025_5716_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/a95e19127ef7/41598_2025_5716_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/630194d426e6/41598_2025_5716_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/be6f501d4a90/41598_2025_5716_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/77fc1f658354/41598_2025_5716_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/3b05adae73c2/41598_2025_5716_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/4f7f51af9624/41598_2025_5716_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/f24aaf1749d9/41598_2025_5716_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/fddd78819596/41598_2025_5716_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/23a1348f4b35/41598_2025_5716_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/48e8777cbcdd/41598_2025_5716_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/1ad63cf3e032/41598_2025_5716_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/b2a3c0e9e572/41598_2025_5716_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/c46e07fbec6f/41598_2025_5716_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/9863107ce0a4/41598_2025_5716_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/a95e19127ef7/41598_2025_5716_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/630194d426e6/41598_2025_5716_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/be6f501d4a90/41598_2025_5716_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/77fc1f658354/41598_2025_5716_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/3b05adae73c2/41598_2025_5716_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/4f7f51af9624/41598_2025_5716_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/f24aaf1749d9/41598_2025_5716_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/fddd78819596/41598_2025_5716_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/23a1348f4b35/41598_2025_5716_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/48e8777cbcdd/41598_2025_5716_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/1ad63cf3e032/41598_2025_5716_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/b2a3c0e9e572/41598_2025_5716_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2339/12181254/c46e07fbec6f/41598_2025_5716_Fig14_HTML.jpg

相似文献

[1]
Thymoquinone controlled obesity and invigorated cognitive and memory performance in rats consuming a high-fat diet via modulating oxidative stress, inflammation and apoptosis.

Sci Rep. 2025-6-20

[2]
Cold-Pressed Oil Standardized to 3% Thymoquinone Potentiates Omega-3 Protection against Obesity-Induced Oxidative Stress, Inflammation, and Markers of Insulin Resistance Accompanied with Conversion of White to Beige Fat in Mice.

Antioxidants (Basel). 2020-6-4

[3]
Nervonic acid triggered ovarian inflammation by inducing mitochondrial oxidative stress to activate NLRP3/ IL-1β pathway.

J Adv Res. 2025-7

[4]
[Evaluation of the combined effect of platensis biomass phycyanin concentrate and soy protein on male Wistar rats fed a high-fat diet with added cholesterol].

Vopr Pitan. 2025

[5]
Study on the modulation of kidney and liver function of rats with diabetic nephropathy by Huidouba through metabolomics.

J Ethnopharmacol. 2025-6-11

[6]
Naringin mitigated doxorubicin-induced kidney injury by the reduction of oxidative stress and inflammation with a synergistic anticancer effect.

BMC Pharmacol Toxicol. 2025-6-23

[7]
Human placental extract rescues hippocampal damage associated with cognitive impairment in diabetic male rats through antioxidative, anti-inflammatory, and neuromodulatory activities.

Metab Brain Dis. 2025-6-16

[8]
Zinc sulfate improves insulin resistance, oxidative stress and apoptosis in liver tissues of PCOS rats through the NF-κB pathway.

Front Endocrinol (Lausanne). 2025-6-6

[9]
Thymoquinone Protects Neurons in the Cerebellum of Rats through Mitigating Oxidative Stress and Inflammation Following High-Fat Diet Supplementation.

Biomolecules. 2021-1-27

[10]
Thymoquinone attenuates diabetes-induced hepatic damage in rat via regulation of oxidative/nitrosative stress, apoptosis, and inflammatory cascade with molecular docking approach.

Sci Rep. 2024-6-6

本文引用的文献

[1]
Thymoquinone ameliorate oxidative stress, GABAergic neuronal depletion and memory impairment through Nrf2/ARE signaling pathway in the dentate gyrus following cypermethrin administration.

BMC Neurosci. 2024-9-27

[2]
Melatonin rescues pregnant female mice and their juvenile offspring from high fat diet-induced alzheimer disease neuropathy.

Heliyon. 2024-8-24

[3]
Glutamate-Mediated Excitotoxicity in the Pathogenesis and Treatment of Neurodevelopmental and Adult Mental Disorders.

Int J Mol Sci. 2024-6-13

[4]
Thymoquinone attenuates diabetes-induced hepatic damage in rat via regulation of oxidative/nitrosative stress, apoptosis, and inflammatory cascade with molecular docking approach.

Sci Rep. 2024-6-6

[5]
Probucol mitigates high-fat diet-induced cognitive and social impairments by regulating brain redox and insulin resistance.

Front Neurosci. 2024-4-23

[6]
Interaction of high-fat diet and brain trauma alters adipose tissue macrophages and brain microglia associated with exacerbated cognitive dysfunction.

J Neuroinflammation. 2024-4-29

[7]
Neuroprotective effect of Withania somnifera leaves extract nanoemulsion against penconazole-induced neurotoxicity in albino rats via modulating TGF-β1/Smad2 signaling pathway.

Inflammopharmacology. 2024-6

[8]
Phytomedicine for neurodegenerative diseases: The road ahead.

Phytother Res. 2024-6

[9]
Impact of high-fat diet on cognitive behavior and central and systemic inflammation with aging and sex differences in mice.

Brain Behav Immun. 2024-5

[10]
The obesity-autophagy-cancer axis: Mechanistic insights and therapeutic perspectives.

Semin Cancer Biol. 2024-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索