文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用人脑肿瘤的图像引导活检对基于磁共振成像的肿瘤细胞密度放射组学图谱进行独立组织学验证。

Independent histological validation of MR-derived radio-pathomic maps of tumor cell density using image-guided biopsies in human brain tumors.

作者信息

Nocera Gianluca, Sanvito Francesco, Yao Jingwen, Oshima Sonoko, Bobholz Samuel A, Teraishi Ashley, Raymond Catalina, Patel Kunal, Everson Richard G, Liau Linda M, Connelly Jennifer, Castellano Antonella, Mortini Pietro, Salamon Noriko, Cloughesy Timothy F, LaViolette Peter S, Ellingson Benjamin M

机构信息

UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA.

Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.

出版信息

J Neurooncol. 2025 Jun 21. doi: 10.1007/s11060-025-05105-x.


DOI:10.1007/s11060-025-05105-x
PMID:40542949
Abstract

PURPOSE: In brain gliomas, non-invasive biomarkers reflecting tumor cellularity would be useful to guide supramarginal resections and to plan stereotactic biopsies. We aim to validate a previously-trained machine learning algorithm that generates cellularity prediction maps (CPM) from multiparametric MRI data to an independent, retrospective external cohort of gliomas undergoing image-guided biopsies, and to compare the performance of CPM and diffusion MRI apparent diffusion coefficient (ADC) in predicting cellularity. METHODS: A cohort of patients with treatment-naïve or recurrent gliomas were prospectively studied. All patients underwent pre-surgical MRI according to the standardized brain tumor imaging protocol. The surgical sampling site was planned based on image-guided biopsy targets and tissue was stained with hematoxylin-eosin for cell density count. The correlation between MRI-derived CPM values and histological cellularity, and between ADC and histological cellularity, was evaluated both assuming independent observations and accounting for non-independent observations. RESULTS: Sixty-six samples from twenty-seven patients were collected. Thirteen patients had treatment-naïve tumors and fourteen had recurrent lesions. CPM value accurately predicted histological cellularity in treatment-naïve patients (b = 1.4, R = 0.2, p = 0.009, rho = 0.41, p = 0.016, RMSE = 1503 cell/mm), but not in the recurrent sub-cohort. Similarly, ADC values showed a significant association with histological cellularity only in treatment-naive patients (b = 1.3, R = 0.22, p = 0.007; rho = -0.37, p = 0.03), not statistically different from the CPM correlation. These findings were confirmed with statistical tests accounting for non-independent observations. CONCLUSION: MRI-derived machine learning generated cellularity prediction maps (CPM) enabled a non-invasive evaluation of tumor cellularity in treatment-naïve glioma patients, although CPM did not clearly outperform ADC alone in this cohort.

摘要

目的:在脑胶质瘤中,反映肿瘤细胞密度的非侵入性生物标志物对于指导超边缘切除术和规划立体定向活检很有用。我们旨在验证一种先前训练的机器学习算法,该算法可从多参数MRI数据生成细胞密度预测图(CPM),应用于接受图像引导活检的独立回顾性外部胶质瘤队列,并比较CPM和扩散MRI表观扩散系数(ADC)在预测细胞密度方面的性能。 方法:对一组未经治疗或复发性胶质瘤患者进行前瞻性研究。所有患者均按照标准化脑肿瘤成像方案进行术前MRI检查。根据图像引导活检靶点规划手术取样部位,组织用苏木精-伊红染色以进行细胞密度计数。在假设独立观察和考虑非独立观察的情况下,评估MRI衍生的CPM值与组织学细胞密度之间以及ADC与组织学细胞密度之间的相关性。 结果:收集了来自27名患者的66个样本。13名患者患有未经治疗的肿瘤,14名患者有复发病变。CPM值准确预测了未经治疗患者的组织学细胞密度(b = 1.4,R = 0.2,p = 0.009,rho = 0.41,p = 0.016,RMSE = 1503个细胞/mm),但在复发亚组中未成功预测。同样,ADC值仅在未经治疗的患者中与组织学细胞密度显示出显著相关性(b = 1.3,R = 0.22,p = 0.007;rho = -0.37,p = 0.03),与CPM相关性无统计学差异。这些发现通过考虑非独立观察的统计检验得到证实。 结论:MRI衍生的机器学习生成的细胞密度预测图(CPM)能够对未经治疗的胶质瘤患者的肿瘤细胞密度进行非侵入性评估,尽管在该队列中CPM并没有明显优于单独的ADC。

相似文献

[1]
Independent histological validation of MR-derived radio-pathomic maps of tumor cell density using image-guided biopsies in human brain tumors.

J Neurooncol. 2025-6-21

[2]
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.

Cochrane Database Syst Rev. 2018-1-22

[3]
Diagnostic Utility of Diffusion-Weighted MRI and Apparent Diffusion Coefficient Values in Differentiating Metastatic From Non-metastatic Lymph Nodes in Cervical Carcinoma.

Cureus. 2025-6-4

[4]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[5]
Noninvasive Autopsy-Validated Tumor Probability Maps Identify Glioma Invasion Beyond Contrast Enhancement.

Neurosurgery. 2024-9-1

[6]
Image guided surgery for the resection of brain tumours.

Cochrane Database Syst Rev. 2014-1-28

[7]
Multi-Site Retrospective Analysis of Diffusion and Perfusion MRI Correlates to Glioma Characteristics Derived from Radio-Pathomic Maps.

Neuro Oncol. 2025-2-17

[8]
MRI software and cognitive fusion biopsies in people with suspected prostate cancer: a systematic review, network meta-analysis and cost-effectiveness analysis.

Health Technol Assess. 2024-10

[9]
Mapping cell density and hypoxia in glioblastoma using time-dependent diffusion MRI: improved cell density assessment compared to conventional diffusion metrics.

Phys Med Biol. 2025-7-17

[10]
Super-resolution sodium MRI of human gliomas at 3T using physics-based generative artificial intelligence.

J Neurooncol. 2025-6-3

本文引用的文献

[1]
Multi-Site Retrospective Analysis of Diffusion and Perfusion MRI Correlates to Glioma Characteristics Derived from Radio-Pathomic Maps.

Neuro Oncol. 2025-2-17

[2]
RANO 2.0 criteria: concepts applicable to the neuroradiologist's clinical practice.

Curr Opin Oncol. 2024-11-1

[3]
Noninvasive Autopsy-Validated Tumor Probability Maps Identify Glioma Invasion Beyond Contrast Enhancement.

Neurosurgery. 2024-9-1

[4]
Radio-pathomic maps of glioblastoma identify phenotypes of non-enhancing tumor infiltration associated with bevacizumab treatment response.

J Neurooncol. 2024-4

[5]
Standardized brain tumor imaging protocols for clinical trials: current recommendations and tips for integration.

Front Radiol. 2023-12-13

[6]
Apparent Diffusion Coefficient Metrics to Differentiate between Treatment-Related Abnormalities and Tumor Progression in Post-Treatment Glioblastoma Patients: A Retrospective Study.

Cancers (Basel). 2023-10-14

[7]
CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2016-2020.

Neuro Oncol. 2023-10-4

[8]
RANO 2.0: Update to the Response Assessment in Neuro-Oncology Criteria for High- and Low-Grade Gliomas in Adults.

J Clin Oncol. 2023-11-20

[9]
Long-term survival with IDH wildtype glioblastoma: first results from the ETERNITY Brain Tumor Funders' Collaborative Consortium (EORTC 1419).

Eur J Cancer. 2023-8

[10]
Diffusion Weighted Imaging in Neuro-Oncology: Diagnosis, Post-Treatment Changes, and Advanced Sequences-An Updated Review.

Cancers (Basel). 2023-1-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索