Cheng Shihong, Kong Xiaohan, Zhang Yiqiu, Gong Jianing, Wang Han, Duan Wei, Li Chujie, Wang Xiyan, Xiao Yan, Wang Qiyue, Liu Yang
School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
Laboratory Animal Center, Sun Yat-sen University, Guangzhou, 510080, China.
Biomaterials. 2026 Jan;324:123516. doi: 10.1016/j.biomaterials.2025.123516. Epub 2025 Jun 18.
Acute myeloid leukemia (AML) remains a formidable hematological malignancy with a poor prognosis, largely due to the limited success of existing treatments in effectively targeting leukemia stem cells (LSCs). These cells are adept at migrating into hypoxic niches within the bone marrow, thereby evading chemotherapeutic agents and retaining their stem-like properties. This evasion facilitates their survival and subsequent regeneration following treatment, significantly contributing to disease relapse and highlighting the need for novel therapeutic interventions. Herein, we present the development of an innovative polymer-drug/siRNA delivery system engineered to respond to hypoxic microenvironments within the bone marrow. This system enables the precision co-delivery of the CXCR4 antagonist plerixafor and siRNA targeting mitochondrial fission protein 1 (Fis1), which induces mitophagy to LSCs. By disrupting the CXCR4/CXCL12 axis and downregulating Fis1 expression, the system effectively impedes LSCs migration and concurrently suppresses mitochondrial autophagy, thereby diminishing the stemness of LSCs. Our findings demonstrate that this dual-action delivery system (PPLazo/siFis1@C) significantly enhances the efficacy of conventional chemotherapeutic agents by concurrently inhibiting LSCs migration and impairing stemness. This integrative therapeutic strategy, which targets both the displacement and self-renewal capacity of LSCs, holds significant promise for improving outcomes in AML relapse treatment.
急性髓系白血病(AML)仍然是一种预后较差的严重血液系统恶性肿瘤,这主要是由于现有治疗方法在有效靶向白血病干细胞(LSC)方面取得的成功有限。这些细胞善于迁移到骨髓内的低氧微环境中,从而逃避化疗药物并保持其干细胞样特性。这种逃避行为促进了它们在治疗后的存活和随后的再生,显著导致疾病复发,并凸显了新型治疗干预措施的必要性。在此,我们展示了一种创新的聚合物 - 药物/小干扰RNA(siRNA)递送系统的研发,该系统设计用于响应骨髓内的低氧微环境。该系统能够精确地共同递送CXCR4拮抗剂普乐沙福和靶向线粒体分裂蛋白1(Fis1)的siRNA,后者可诱导LSC发生线粒体自噬。通过破坏CXCR4/CXCL12轴并下调Fis1表达,该系统有效地阻碍了LSC的迁移,同时抑制线粒体自噬,从而降低了LSC的干性。我们的研究结果表明,这种双作用递送系统(PPLazo/siFis1@C)通过同时抑制LSC迁移和损害其干性,显著提高了传统化疗药物的疗效。这种针对LSC的迁移和自我更新能力的综合治疗策略,在改善AML复发治疗的结果方面具有巨大潜力。