Suppr超能文献

磁铁矿强化硫铁矿自养反硝化:从实验室规模到中试规模的超低水力停留时间深度脱氮

Magnetite-augmented sulfur-siderite autotrophic denitrification: Deep nitrogen removal at ultra-low HRT from lab to pilot scale.

作者信息

Sun Jiale, Li Haoyong, Dong He, Liu Lu, Zhou Chunyv, Du Ziwen, Dang Yan, Holmes Dawn E

机构信息

Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Hebei Key Laboratory for Emerging Contaminants Control and Risk Management, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; China Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.

Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Hebei Key Laboratory for Emerging Contaminants Control and Risk Management, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; China Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.

出版信息

Water Res. 2025 Sep 15;284:124034. doi: 10.1016/j.watres.2025.124034. Epub 2025 Jun 16.

Abstract

Persistent eutrophication and increasingly stringent discharge regulations have intensified the demand for advanced nitrogen removal technologies in wastewater treatment. Sulfur-siderite autotrophic denitrification (SSAD) presents a chemical-free, low-carbon alternative to conventional heterotrophic processes. However, its widespread application is hindered by long hydraulic retention times (HRTs) and frequent nitrite (NO-N) accumulation. To address these limitations, this study developed a sulfur-siderite-magnetite autotrophic denitrification (SSMAD) system by integrating magnetite into SSAD fillers. Both lab- and pilot-scale experiments confirmed that SSMAD significantly outperformed SSAD in terms of denitrification capacity and stability. The SSMAD system maintained robust performance at HRTs under 3 h, whereas the SSAD reactor exhibited negligible nitrate removal. In pilot-scale SSMAD reactors treating secondary effluent, total nitrogen in the effluent remained below 11.5 and 12.3 mg/L at ultra-low HRTs of 20 and 15 min, respectively. At a 30-minute hydraulic retention times (HRT), the SSMAD system achieved a denitrification load of 0.95 kgN/(m·d), exceeding those of SSAD and sulfur autotrophic denitrification (SAD) systems by factors of 1.6 and 4.4, respectively. Sulfur served as the primary electron donor, while Fe released from siderite provided an additional source of electrons. The microbial community in both SSAD and SSMAD systems was enriched with Thiobacillus and Sulfurimonas, which couple sulfur and iron oxidation with nitrate reduction. Magnetite additions enhanced both sulfur- and iron- driven denitrification and increased the abundance of these key genera. Metatranscriptomic analysis indicated that magnetite facilitated interspecies electron transfer (IET) via sulfur intermediates produced by Sulfurimonas and utilized by Thiobacillus. Additionally, extracellular electron transfer (EET) by Thiobacillus was promoted, evidenced by up-regulated expression of genes coding for extracellular c-type cytochromes. Overall, this study presents a viable strategy for achieving energy-efficient, rapid nitrogen removal at ultra-short HRTs, demonstrating the practical potential of SSMAD for advanced wastewater treatment applications.

摘要

持续的富营养化以及日益严格的排放法规加剧了废水处理中对先进脱氮技术的需求。硫铁矿自养反硝化(SSAD)为传统异养工艺提供了一种无化学药剂、低碳的替代方案。然而,其广泛应用受到长水力停留时间(HRT)和频繁的亚硝酸盐(NO-N)积累的阻碍。为解决这些限制,本研究通过将磁铁矿整合到SSAD填料中开发了一种硫铁矿-磁铁矿自养反硝化(SSMAD)系统。实验室规模和中试规模的实验均证实,SSMAD在反硝化能力和稳定性方面显著优于SSAD。SSMAD系统在HRT低于3小时的情况下保持了强劲的性能,而SSAD反应器的硝酸盐去除率可忽略不计。在处理二级出水的中试规模SSMAD反应器中,在20分钟和15分钟的超低HRT下,出水总氮分别保持在11.5和12.3毫克/升以下。在30分钟的水力停留时间(HRT)下,SSMAD系统实现了0.95千克氮/(立方米·天)的反硝化负荷,分别比SSAD和硫自养反硝化(SAD)系统高出1.6倍和4.4倍。硫作为主要电子供体,而从硫铁矿中释放的铁提供了额外的电子来源。SSAD和SSMAD系统中的微生物群落都富含将硫和铁氧化与硝酸盐还原耦合的硫杆菌属和硫单胞菌属。添加磁铁矿增强了硫和铁驱动的反硝化作用,并增加了这些关键属的丰度。宏转录组分析表明,磁铁矿通过硫单胞菌产生并被硫杆菌利用的硫中间体促进了种间电子转移(IET)。此外,硫杆菌的细胞外电子转移(EET)也得到了促进,编码细胞外c型细胞色素的基因表达上调证明了这一点。总体而言,本研究提出了一种在超短HRT下实现节能、快速脱氮的可行策略,证明了SSMAD在深度废水处理应用中的实际潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验