Shimada B K, Apo Takayama N K, Hallam K A, Pjd Santiago, Yew J Y, Alfulaij N, Nakahara-Akita K, Soares A G, Berry M J, Seale L A
Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, USA.
Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, USA.
J Trace Elem Med Biol. 2025 Aug;90:127685. doi: 10.1016/j.jtemb.2025.127685. Epub 2025 Jun 18.
BACKGROUND/PURPOSE: High-fructose consumption is a driver of cardiometabolic disorders and metabolic syndrome, and selenium (Se) deficiency further increases the risk of developing these diseases. Consuming high amounts of fructose induces insulin resistance and oxidative stress, and alters the cardiac lipidome. Se may reduce the detrimental impacts of fructose through its incorporation into selenoproteins like the glutathione peroxidases 1 and 4, (GPX1,4) and the thioredoxin reductase 1 (TXNRD1) whose primary function is to curb oxidative stress. When Se levels are limited, selenocysteine lyase (SCLY) decomposes selenocysteine (Sec) to hydrogen selenide (HSe), and loss of Scly results in metabolic syndrome in mice. However, it is unknown if SCLY is required to sustain the synthesis of critical antioxidant selenoproteins to prevent oxidative stress, cardiometabolic disorders, and metabolic syndrome caused by high-fructose consumption.
In this study, we analyzed cardiometabolic parameters, the cardiac lipidome, and the cardiac protein levels of GPX and TXNRD in male and female whole-body Scly knockout (Scly KO) mice fed a selenomethionine (SeMet) deficient, high-fructose diet.
RESULTS/CONCLUSION: We found that selenomethionine deficiency, coupled with high-fructose consumption does not lead to cardiometabolic disorder in the Scly KO mice, and suggests that there are compensatory mechanisms involving Se metabolism that are protective against fructose-induced cardiometabolic disorder.
背景/目的:高果糖摄入是心脏代谢紊乱和代谢综合征的一个驱动因素,而硒(Se)缺乏会进一步增加患这些疾病的风险。大量摄入果糖会诱导胰岛素抵抗和氧化应激,并改变心脏脂质组。硒可能通过掺入谷胱甘肽过氧化物酶1和4(GPX1、4)以及硫氧还蛋白还原酶1(TXNRD1)等硒蛋白来降低果糖的有害影响,这些硒蛋白的主要功能是抑制氧化应激。当硒水平有限时,硒代半胱氨酸裂解酶(SCLY)会将硒代半胱氨酸(Sec)分解为硒化氢(HSe),Scly缺失会导致小鼠出现代谢综合征。然而,尚不清楚是否需要SCLY来维持关键抗氧化硒蛋白的合成,以预防由高果糖摄入引起的氧化应激、心脏代谢紊乱和代谢综合征。
在本研究中,我们分析了喂食缺硒蛋氨酸(SeMet)的高果糖饮食的雄性和雌性全身Scly基因敲除(Scly KO)小鼠的心脏代谢参数、心脏脂质组以及GPX和TXNRD的心脏蛋白水平。
结果/结论:我们发现,硒蛋氨酸缺乏与高果糖摄入相结合并不会导致Scly KO小鼠出现心脏代谢紊乱,这表明存在涉及硒代谢的补偿机制,可预防果糖诱导的心脏代谢紊乱。