Chu Wei, Luo Mingzhu, Wang Jingyi, Jiao Yue, Ma Yanyan, Li Jingzhe, Liu Changzhen
Experimental Research Center of China Academy of Chinese Medical Sciences, Beijing, China.
Experimental Research Center of China Academy of Chinese Medical Sciences, Beijing, China.
J Ethnopharmacol. 2025 Jun 19;352:120176. doi: 10.1016/j.jep.2025.120176.
Hepatocellular carcinoma (HCC) is a primary malignancy originating from hepatocytes in the liver parenchyma. Pulsatilla chinensis (Bunge) Regel(P. chinensis) (verified via http://www.theplantlist.org, accessed April 5, 2025), a perennial herb of the Ranunculaceae family, contains multiple bioactive constituents with demonstrated pharmacological effects, including antitumor, anti-inflammatory, antibacterial, antiviral, and immunomodulatory activities.
To investigate the mechanisms of action and pharmacodynamic material basis of active compounds from P. chinensis against HCC cells.
Active compounds of P. chinensis were screened using the HERB database. Potential drug targets were predicted via the SwissTargetPrediction database. HCC-related targets were retrieved from GeneCards, OMIM, and TTD databases, followed by Venn diagram analysis to identify shared drug-disease targets. STRING database was employed for protein-protein interaction (PPI) network analysis and core target screening. DAVID platform was used for Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Cytoscape software constructed a compound-target-pathway network to identify key active components and potential mechanisms. Molecular docking simulations validated the binding affinity between core targets and Pulsatilla's active compounds. A luciferase reporter gene system was established, generating A549-TP53 monoclonal cell lines stably expressing p53-NLuc, followed by functional validation. Traditional Chinese medicine (TCM) monomer compounds were screened using A549-TP53 cells. Flow cytometry and Western blot assessed their effects on apoptosis in 7402 and 7721 human HCC cells. Molecular dynamics simulations validated the binding interactions between the compounds and TP53.
HERB database identified 29 active compounds from P. chinensis. SwissTargetPrediction predicted 606 potential drug targets. GeneCards, OMIM, and TTD yielded 1095 disease-related targets, with 163 overlapping targets identified via Venn analysis. PPI analysis using the STRING database revealed the top five core targets: TP53, GAPDH, AKT1, EGFR, and STAT3. Cytoscape analysis identified 14 core active compounds from P. chinensis. Molecular docking results revealed that among these 14 core active compounds from P. chinensis, the top five with the highest binding affinity to TP53 protein were: Pulchinenoside C, Pulsatilla Saponin D, Pulsatilloside B, Qingdainone and Sitogluside. The recombinant retroviral vector pQCXIP-p53-NLuc was successfully constructed, and luciferase activity assays confirmed A549-TP53 as a stable NanoLuc (Nluc)-expressing cell line regulated by TP53. Luciferase assays demonstrated that Pulchinenoside C (20-80 μM), Pulsatilla Saponin D (5-80 μM), and Qingdainone (20-80 μM) significantly modulated A549-TP53 transcriptional activity. Flow cytometry revealed that Pulsatilla Saponin D and Pulchinenoside C markedly induced apoptosis in 7402 and 7721 cells.Western blot revealed Pulchinenoside C significantly elevated cleaved caspase-3 in both 7402 and 7721 cells, whereas Pulsatilla Saponin D markedly increased it in 7402 cells. Molecular dynamics simulation results indicate that Pulsatilla Saponin D and Pulchinenoside C may exert their biological effects by inhibiting the TP53 target protein.
The active compounds Pulchinenoside C and Pulsatilla Saponin D significantly promoting apoptosis in HCC cells via TP53 targeting.
肝细胞癌(HCC)是起源于肝实质中肝细胞的原发性恶性肿瘤。白头翁(通过http://www.theplantlist.org核实,于2025年4月5日访问),毛茛科多年生草本植物,含有多种具有已证实药理作用的生物活性成分,包括抗肿瘤、抗炎、抗菌、抗病毒和免疫调节活性。
研究白头翁活性化合物对肝癌细胞的作用机制和药效物质基础。
使用HERB数据库筛选白头翁的活性化合物。通过SwissTargetPrediction数据库预测潜在的药物靶点。从GeneCards、OMIM和TTD数据库中检索HCC相关靶点,然后通过维恩图分析确定共同的药物-疾病靶点。利用STRING数据库进行蛋白质-蛋白质相互作用(PPI)网络分析和核心靶点筛选。使用DAVID平台进行基因本体(GO)富集和京都基因与基因组百科全书(KEGG)通路分析。Cytoscape软件构建化合物-靶点-通路网络,以确定关键活性成分和潜在机制。分子对接模拟验证了核心靶点与白头翁活性化合物之间的结合亲和力。建立荧光素酶报告基因系统,生成稳定表达p53-NLuc的A549-TP53单克隆细胞系,随后进行功能验证。使用A549-TP53细胞筛选中药单体化合物。流式细胞术和蛋白质印迹法评估它们对7402和7721人肝癌细胞凋亡的影响。分子动力学模拟验证了化合物与TP53之间的结合相互作用。
HERB数据库鉴定出白头翁中的29种活性化合物。SwissTargetPrediction预测了606个潜在的药物靶点。GeneCards、OMIM和TTD产生了1095个疾病相关靶点,通过维恩分析确定了163个重叠靶点。使用STRING数据库进行的PPI分析揭示了前五个核心靶点:TP53、GAPDH、AKT1、EGFR和STAT3。Cytoscape分析确定了白头翁中的14种核心活性化合物。分子对接结果显示,在白头翁的这14种核心活性化合物中,与TP53蛋白结合亲和力最高的前五种化合物是:白头翁皂苷C、白头翁皂苷D、白头翁皂苷B、青黛酮和谷甾糖苷。成功构建了重组逆转录病毒载体pQCXIP-p53-NLuc,荧光素酶活性测定证实A549-TP53是受TP53调控的稳定表达纳米荧光素酶(Nluc)的细胞系。荧光素酶测定表明,白头翁皂苷C(20-80μM)、白头翁皂苷D(5-80μM)和青黛酮(20-80μM)显著调节A549-TP53转录活性。流式细胞术显示,白头翁皂苷D和白头翁皂苷C显著诱导7402和7721细胞凋亡。蛋白质印迹法显示,白头翁皂苷C显著提高了7402和7721细胞中裂解的caspase-3水平,而白头翁皂苷D在7402细胞中显著提高了该水平。分子动力学模拟结果表明,白头翁皂苷D和白头翁皂苷C可能通过抑制TP53靶蛋白发挥其生物学作用。
活性化合物白头翁皂苷C和白头翁皂苷D通过靶向TP53显著促进肝癌细胞凋亡。