玉米醛糖-酮糖还原酶4家族的功能基因组学与结构洞察:胚胎中的胁迫代谢与底物特异性

Functional genomics and structural insights into maize aldo-keto reductase-4 family: Stress metabolism and substrate specificity in embryos.

作者信息

Morais de Sousa Sylvia, Oliveira de Giuseppe Priscila, Murakami Mario Tyago, Guan Jiahn-Chou, Saunders Jonathan W, Kiyota Eduardo, Santos Marcelo Leite, Schmelz Eric A, Yunes Jose Andres, Koch Karen E

机构信息

Embrapa Maize and Sorghum, Sete Lagoas, MG, Brazil.

Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil.

出版信息

J Biol Chem. 2025 Jul;301(7):110404. doi: 10.1016/j.jbc.2025.110404. Epub 2025 Jun 20.

Abstract

Aldo-keto reductases (AKRs) are ubiquitous in nature and are able to reduce a wide range of substrates, from simple sugars to potentially toxic aldehydes. In plants, AKRs are involved in key metabolic processes including reactive aldehyde detoxification. This study aimed to (i) delineate a maize gene family encoding aldo keto reductase-4s (AKR4s) (ii) help bridge sequence-to-function gaps among them, and (iii) focus on a family member implicated in embryo specific stress metabolism. We employed a genome-wide analysis approach to identify maize genes encoding AKR4s, defining and annotating a 15-member gene family that clustered into three subgroups. Expression profiling, validated through wet lab experiments, revealed distinct functional roles: (i) AKR4C Zm-1 functions in aldehyde detoxification during stress, (ii) AKR4C Zm-2 includes stress-responsive AKRs with diverse substrate affinities, and (iii) AKR4A/B Zm-3 contributes to specialized metabolites like phytosiderophores for iron transport. To investigate the impact of sequence variation on function, we characterized ZmAKR4C13, a representative of AKR4C Zm-1. Its mRNA and protein were predominantly localized in embryos, suggesting a specialized role. Recombinant ZmAKR4C13 efficiently reduced methylglyoxal and small aldehydes but showed poor activity toward aldoses larger than four carbons. Crystallographic analysis identified a size constraint at the active site, attributed to the bulkier LEU residue at position 294. Collectively, our results emphasize how subtle modifications in active-site architecture influence AKR substrate specificity. They also demonstrate a potential role of maize ZmAKR4C13 in detoxifying methylglyoxal and other small metabolites that could contribute to stress signaling in embryos.

摘要

醛酮还原酶(AKRs)在自然界中广泛存在,能够还原多种底物,从单糖到潜在有毒的醛类。在植物中,AKRs参与关键的代谢过程,包括活性醛解毒。本研究旨在:(i)描绘一个编码醛酮还原酶4s(AKR4s)的玉米基因家族;(ii)帮助填补它们之间序列与功能的差距;(iii)聚焦于一个与胚胎特异性应激代谢有关的家族成员。我们采用全基因组分析方法来鉴定编码AKR4s的玉米基因,定义并注释了一个由15个成员组成的基因家族,该家族聚为三个亚组。通过湿实验室实验验证的表达谱分析揭示了不同的功能作用:(i)AKR4C Zm-1在应激期间发挥醛解毒作用;(ii)AKR4C Zm-2包括具有不同底物亲和力的应激反应性AKRs;(iii)AKR4A/B Zm-3有助于合成如植物铁载体等特殊代谢产物以进行铁运输。为了研究序列变异对功能的影响,我们对AKR4C Zm-1的代表成员ZmAKR4C13进行了表征。其mRNA和蛋白质主要定位于胚胎中,表明其具有特殊作用。重组ZmAKR4C13能有效还原甲基乙二醛和小分子醛,但对四个以上碳原子的醛糖活性较差。晶体学分析确定了活性位点的大小限制,这归因于第294位的亮氨酸残基较大。总体而言,我们的结果强调了活性位点结构的细微修饰如何影响AKR底物特异性。它们还证明了玉米ZmAKR4C13在解毒甲基乙二醛和其他可能有助于胚胎应激信号传导的小分子代谢产物方面的潜在作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b15f/12302338/842881d204ea/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索