Suppr超能文献

深度学习辅助超声在预测胰腺癌患者淋巴结转移中的临床益处

Clinical benefits of deep learning-assisted ultrasound in predicting lymph node metastasis in pancreatic cancer patients.

作者信息

Wen Dong-Yue, Chen Jia-Min, Tang Zhi-Ping, Pang Jin-Shu, Qin Qiong, Zhang Lu, He Yun, Yang Hong

机构信息

Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China.

Department of Medical Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China.

出版信息

Future Oncol. 2025 Jun 23:1-11. doi: 10.1080/14796694.2025.2520149.

Abstract

AIM

This study aimed to develop and validate a deep learning radiomics nomogram (DLRN) derived from ultrasound images to improve predictive accuracy for lymph node metastasis (LNM) in pancreatic cancer (PC) patients.

METHODS

A retrospective analysis of 249 histopathologically confirmed PC cases, including 78 with LNM, was conducted, with an 8:2 division into training and testing cohorts. Eight transfer learning models and a baseline logistic regression model incorporating handcrafted radiomic and clinicopathological features were developed to evaluate predictive performance. Diagnostic effectiveness was assessed for junior and senior ultrasound physicians, both with and without DLRN assistance.

RESULTS

InceptionV3 showed the highest performance among DL models (AUC = 0.844), while the DLRN model, integrating deep learning and radiomic features, demonstrated superior accuracy (AUC = 0.909), robust calibration, and significant clinical utility per decision curve analysis. DLRN assistance notably enhanced diagnostic performance, with AUC improvements of 0.238 ( = 0.006) for junior and 0.152 ( = 0.085) for senior physicians.

CONCLUSION

The ultrasound-based DLRN model exhibits strong predictive capability for LNM in PC, offering a valuable decision-support tool that bolsters diagnostic accuracy, especially among less experienced clinicians, thereby supporting more tailored therapeutic strategies for PC patients.

摘要

目的

本研究旨在开发并验证一种基于超声图像的深度学习放射组学列线图(DLRN),以提高胰腺癌(PC)患者淋巴结转移(LNM)的预测准确性。

方法

对249例经组织病理学确诊的PC病例进行回顾性分析,其中78例有LNM,按8:2分为训练组和测试组。开发了8种迁移学习模型和一个纳入手工提取的放射组学及临床病理特征的基线逻辑回归模型,以评估预测性能。在有无DLRN辅助的情况下,对初级和高级超声医师的诊断效能进行了评估。

结果

InceptionV3在深度学习模型中表现最佳(AUC = 0.844),而整合了深度学习和放射组学特征的DLRN模型显示出更高的准确性(AUC = 0.909)、稳健的校准以及根据决策曲线分析具有显著的临床实用性。DLRN辅助显著提高了诊断性能,初级医师的AUC提高了0.238(P = 0.006),高级医师的AUC提高了0.152(P = 0.085)。

结论

基于超声的DLRN模型对PC患者的LNM具有强大的预测能力,提供了一种有价值的决策支持工具,可提高诊断准确性,尤其是在经验不足的临床医生中,从而为PC患者支持更具针对性的治疗策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验