Hao Jialiang, Feng Yang, Ma Qianyi, Li Hongxiang, Hong Chunxia, Hou Chen, Wang Ying, Jing Yang, Li Yiwen, Liu Guangfeng, Li Xiuhong, Li Aiguo, Bian Fenggang, Ma Ruijie, Wang Yuanyang, Huang Yuying, Yang Chunming
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China.
School of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan, 030027, China.
Adv Sci (Weinh). 2025 Sep;12(35):e01823. doi: 10.1002/advs.202501823. Epub 2025 Jun 23.
Optimizing the morphology of the active layer is crucial for achieving high photovoltaic conversion efficiency in all-polymer solar cells (APSCs). Solvent vapor annealing (SVA) is an essential post-treatment strategy for controlling active layer morphology. However, most current SVA are conducted ex situ, limiting their ability to accurately reveal the morphological evolution of active layers of APSCs. In this study, in situ synchrotron radiation GIWAXS and in situ UV-vis spectroscopy combined with GISAXS is used to monitor the morphological evolution of PM6/PY-IT blends during the SVA process in real-time. Results showed that the PY-IT absorption peak exhibited a red shift under a nonpolar carbon disulfide vapor, while a blue shift is observed during the SVA process with a polar chloroform vapor. The SVA process can be divided into three stages: solvent swelling, recrystallization, and molecular rearrangement. For thermally pre-annealed samples subjected to chloroform SVA, the power conversion efficiency (PCE) increased by 15.1%. The improved PCE stems from reduced crystal plane spacing (d-spacing), enhanced crystal coherence length, and optimal phase separation via SVA. Pre-annealing suppresses excessive swelling, emphasizing the reordering dynamical role in the morphology of APSCs. This study offers insights into balancing SVA conditions to maximize performance and minimize adverse effects.
优化活性层的形态对于在全聚合物太阳能电池(APSC)中实现高光伏转换效率至关重要。溶剂气相退火(SVA)是控制活性层形态的重要后处理策略。然而,目前大多数SVA都是在非原位进行的,这限制了它们准确揭示APSC活性层形态演变的能力。在本研究中,利用原位同步辐射掠入射广角X射线散射(GIWAXS)以及结合掠入射小角X射线散射(GISAXS)的原位紫外-可见光谱来实时监测SVA过程中PM6/PY-IT共混物的形态演变。结果表明,在非极性二硫化碳蒸气下,PY-IT吸收峰出现红移,而在极性氯仿蒸气的SVA过程中观察到蓝移。SVA过程可分为三个阶段:溶剂溶胀、重结晶和分子重排。对于经过氯仿SVA处理的热预退火样品,功率转换效率(PCE)提高了15.1%。PCE的提高源于通过SVA减小了晶面间距(d间距)、增强了晶体相干长度以及实现了最佳相分离。预退火抑制了过度溶胀,强调了在APSC形态中的重排动力学作用。本研究为平衡SVA条件以最大化性能并最小化不利影响提供了见解。