Alfaro Sergio, González-Norambuena Fabián, Velázquez-Libera José Luis, Adasme-Carreño Francisco, Caballero Julio
Centro de Bioinformática, Simulación y Modelado, Facultad de Ingeniería, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca 3460000, Chile.
Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3480094, Chile.
J Chem Inf Model. 2025 Jul 14;65(13):7113-7128. doi: 10.1021/acs.jcim.5c00571. Epub 2025 Jun 23.
molecular models of receptor-ligand complexes, built using molecular docking methods, are valuable as they potentially reveal the chemical interactions responsible for specific affinities. When applied to series of congeneric compounds, they help formulate theories about the effects of different substituents on affinity differences. Molecular docking provides (i) a pose where chemical interactions are optimized and (ii) an energy value indicating how favorable the interaction is. The capability of molecular docking for the first purpose is recognized, but it fails considerably in the second. It is widely known that energy values obtained by molecular docking are unreliable, which makes their application to congeneric series unable to correlate these computationally calculated energy values with laboratory-derived biological activities. Theoretically, an improved correlation could be obtained when protein flexibility is considered in the docking calculation; i.e., flexibility in the protein residues at the binding site can give access to more representative docking solutions. With this in mind, in this work, we present the novel web server CorrEA with a simple and innovative way of considering the flexibility of ligand-protein systems. To apply the method, users must generate a set of receptor conformations exhibiting significant variability within the binding site. Subsequently, they should cross-dock the ligand series they intend to study, to obtain various poses for each ligand across the different receptor conformations. CorrEA performs a genetic algorithm (GA) selection to extract a representative complex for each ligand that better adjusts the global correlation between calculated docking energy values and experimental logarithmic biological activities. In the end, CorrEA provides the ligand-protein pairs that produce the highest correlations. The new method was tested in several different cases to demonstrate its usefulness.
使用分子对接方法构建的受体 - 配体复合物分子模型很有价值,因为它们有可能揭示导致特定亲和力的化学相互作用。当应用于一系列同类化合物时,它们有助于形成关于不同取代基对亲和力差异影响的理论。分子对接提供了(i)一个化学相互作用得到优化的构象,以及(ii)一个表明相互作用有利程度的能量值。分子对接实现第一个目的的能力是得到认可的,但在第二个方面却相当失败。众所周知,通过分子对接获得的能量值不可靠,这使得它们在同类系列中的应用无法将这些计算得到的能量值与实验室得出的生物活性相关联。从理论上讲,在对接计算中考虑蛋白质灵活性时可以获得更好的相关性;也就是说,结合位点处蛋白质残基的灵活性可以得到更具代表性的对接解决方案。考虑到这一点,在这项工作中,我们展示了新颖的网络服务器CorrEA,它采用一种简单且创新的方式来考虑配体 - 蛋白质系统的灵活性。为了应用该方法,用户必须生成一组在结合位点内表现出显著变异性的受体构象。随后,他们应该对打算研究的配体系列进行交叉对接,以在不同的受体构象中获得每个配体的各种构象。CorrEA执行遗传算法(GA)选择,为每个配体提取一个能更好地调整计算得到的对接能量值与实验对数生物活性之间全局相关性的代表性复合物。最后,CorrEA提供产生最高相关性的配体 - 蛋白质对。该新方法在几个不同的案例中进行了测试,以证明其有用性。