Suppr超能文献

从在学习管理系统上开展放射解剖学课程评估中吸取的经验教训。

Lessons learned from conducting assessments in radioanatomy courses on learning management systems.

作者信息

Grévisse Christian, Kayser Françoise

机构信息

Department of Life Sciences and Medicine, Université du Luxembourg, Esch-sur-Alzette, Luxembourg.

Department of Radiology, CHU UCL Namur, Université Catholique de Louvain, Yvoir, Belgium.

出版信息

Anat Sci Educ. 2025 Sep;18(9):1004-1012. doi: 10.1002/ase.70077. Epub 2025 Jun 23.

Abstract

Radioanatomy, short for radiographic anatomy, is the study of anatomy through medical imaging. Its early-stage introduction into medical curricula has been recommended in the literature. As with many other medical courses, it has seen a shift toward blended learning, including assessment on learning management systems such as Moodle, one advantage being automatic or at least assisted grading. The majority of previous studies in the realm of radioanatomy report only on the usage of multiple choice questions, due to several challenges related to computer-based assessment. Nonetheless, we encourage radioanatomy teachers to include a more diverse set of question types. We consolidated the lessons learned during our experience over three academic years of carrying out summative assessments in radioanatomy courses on Moodle. Among others, we discuss technical aspects such as image optimization. Providing a lexicon for standardized answers fosters automatic grading. A student survey supports the idea of using stack visualizations for better image interpretation. We finally underline the importance of collaboration between different stakeholders to ensure a smooth assessment preparation, execution, and analysis. These findings offer valuable insights for improving e-assessment in radioanatomy and potentially other medical courses.

摘要

放射解剖学是影像学解剖学的简称,是通过医学成像来研究解剖学。文献中已建议将其早期引入医学课程。与许多其他医学课程一样,它已朝着混合式学习转变,包括在诸如Moodle等学习管理系统上进行评估,其优势之一是自动评分或至少辅助评分。由于与基于计算机的评估相关的若干挑战,放射解剖学领域以前的大多数研究仅报告了多项选择题的使用情况。尽管如此,我们鼓励放射解剖学教师采用更多样化的问题类型。我们总结了在Moodle上开展放射解剖学课程的三个学年的总结性评估过程中所吸取的经验教训。其中,我们讨论了图像优化等技术方面。提供标准化答案的词汇表有助于自动评分。一项学生调查支持使用堆栈可视化来更好地解释图像的想法。我们最后强调了不同利益相关者之间合作对于确保评估准备、执行和分析顺利进行的重要性。这些发现为改进放射解剖学以及可能其他医学课程的电子评估提供了宝贵的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验