Papagiannakis Alexandros, Yu Qiwei, Govers Sander K, Lin Wei-Hsiang, Wingreen Ned S, Jacobs-Wagner Christine
Howard Hughes Medical Institute, Stanford University, Stanford, United States.
Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States.
Elife. 2025 Jun 24;14:RP104276. doi: 10.7554/eLife.104276.
Chromosome segregation is essential for cellular proliferation. Unlike eukaryotes, bacteria lack cytoskeleton-based machinery to segregate their chromosomal DNA (nucleoid). The bacterial ParABS system segregates the duplicated chromosomal regions near the origin of replication. However, this function does not explain how bacterial cells partition the rest (bulk) of the chromosomal material. Furthermore, some bacteria, including , lack a ParABS system. Yet, faithfully segregates nucleoids across various growth rates. Here, we provide theoretical and experimental evidence that polysome production during chromosomal gene expression helps compact, split, segregate, and position nucleoids in through nonequilibrium dynamics that depend on polysome synthesis, degradation (through mRNA decay), and exclusion from the DNA meshwork. These dynamics inherently couple chromosome segregation to biomass growth across nutritional conditions. Halting chromosomal gene expression and thus polysome production immediately stops sister nucleoid migration, while ensuing polysome depletion gradually reverses nucleoid segregation. Redirecting gene expression away from the chromosome and toward plasmids causes ectopic polysome accumulations that are sufficient to drive aberrant nucleoid dynamics. Cell width enlargement experiments suggest that limiting the exchange of polysomes across DNA-free regions ensures nucleoid segregation along the cell length. Our findings suggest a self-organizing mechanism for coupling nucleoid compaction and segregation to cell growth without the apparent requirement of regulatory molecules.
染色体分离对于细胞增殖至关重要。与真核生物不同,细菌缺乏基于细胞骨架的机制来分离其染色体DNA(类核)。细菌的ParABS系统在复制起点附近分离重复的染色体区域。然而,这一功能并不能解释细菌细胞如何分配染色体物质的其余部分(大部分)。此外,一些细菌,包括 ,缺乏ParABS系统。然而, 能在不同生长速率下忠实地分离类核。在这里,我们提供理论和实验证据,表明染色体基因表达过程中的多核糖体产生通过依赖多核糖体合成、降解(通过mRNA衰变)以及从DNA网络中排除的非平衡动力学,有助于在 中压缩、分裂、分离和定位类核。这些动力学本质上使染色体分离与不同营养条件下的生物量生长相耦合。停止染色体基因表达从而停止多核糖体产生会立即阻止姐妹类核迁移,而随后的多核糖体消耗会逐渐逆转类核分离。将基因表达从染色体转向质粒会导致异位多核糖体积累,足以驱动异常的类核动力学。细胞宽度扩大实验表明,限制多核糖体在无DNA区域的交换可确保类核沿细胞长度分离。我们的发现表明了一种自组织机制,可将类核压缩和分离与细胞生长相耦合,而显然不需要调节分子。