Urbanos Gemma, Castaño-León Ana M, Maldonado-Luna Mónica, Salvador Elena, Ramos Ana, Lechuga Carmen, Sanz César, Juárez Eduardo, Lagares Alfonso
Research Center on Software Technologies and Multimedia Systems for Sustainability (CITSEM), Campus Sur Universidad Politécnica de Madrid (UPM), Madrid, 28031, Spain.
Servicio de Neurocirugía, Hospital Universitario 12 de Octubre, Facultad de Medicina, Departamento de Cirugía, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain.
Neurosurg Rev. 2025 Jun 24;48(1):528. doi: 10.1007/s10143-025-03679-8.
Subarachnoid hemorrhage (SAH) is a severe condition with high morbidity and long-term neurological consequences. Radiomics, by extracting quantitative features from Computed Tomograhpy (CT) scans, may reveal imaging biomarkers predictive of outcomes. This study evaluates the predictive value of radiomics in SAH for multiple outcomes and compares its performance to models based on clinical data.Radiomic features were extracted from admission CTs using segmentations of brain tissue (white and gray matter) and hemorrhage. Machine learning models with cross-validation were trained using clinical data, radiomics, or both, to predict 6-month mortality, Glasgow Outcome Scale (GOS), vasospasm, and long-term hydrocephalus. SHapley Additive exPlanations (SHAP) analysis was used to interpret feature contributions.The training dataset included 403 aneurysmal SAH patients; GOS predictions used all patients, while vasospasm and hydrocephalus predictions excluded those with incomplete data or early death, leaving 328 and 332 patients, respectively. Radiomics and clinical models demonstrated comparable performance, achieving in validation set AUCs more than 85% for six-month mortality and clinical outcome, and 75% and 86% for vasospasm and hydrocephalus, respectively. In an independent cohort of 41 patients, the combined models yielded AUCs of 89% for mortality, 87% for clinical outcome, 66% for vasospasm, and 72% for hydrocephalus. SHAP analysis highlighted significant contributions of radiomic features from brain tissue and hemorrhage segmentation, alongside key clinical variables, in predicting SAH outcomes.This study underscores the potential of radiomics-based approaches for SAH outcome prediction, demonstrating predictive power comparable to traditional clinical models and enhancing understanding of SAH-related complications.Clinical trial number Not applicable.
蛛网膜下腔出血(SAH)是一种严重疾病,具有高发病率和长期神经学后果。放射组学通过从计算机断层扫描(CT)图像中提取定量特征,可能揭示预测预后的影像学生物标志物。本研究评估放射组学在SAH中对多种预后的预测价值,并将其性能与基于临床数据的模型进行比较。使用脑组织(白质和灰质)及出血的分割图像,从入院时的CT图像中提取放射组学特征。采用交叉验证的机器学习模型,利用临床数据、放射组学数据或两者共同训练,以预测6个月死亡率、格拉斯哥预后量表(GOS)、血管痉挛和长期脑积水情况。使用SHapley加性解释(SHAP)分析来解释特征贡献。训练数据集包括403例动脉瘤性SAH患者;GOS预测使用了所有患者的数据,而血管痉挛和脑积水预测排除了数据不完整或早期死亡的患者,分别留下328例和332例患者。放射组学模型和临床模型表现出相当的性能,在验证集中,6个月死亡率和临床结局的AUC超过85%,血管痉挛和脑积水的AUC分别为75%和86%。在一个41例患者的独立队列中,联合模型得出的死亡率AUC为89%,临床结局为87%,血管痉挛为