文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于TCGA和TCIA放射组学预测高级别胶质瘤中血小板源性生长因子受体配体的表达及预后意义

Predicting podoplanin expression and prognostic significance in high-grade glioma based on TCGA TCIA radiomics.

作者信息

Long Shengrong, Xu Hongyu, Li Mingdong, Wang Lesheng, Jiang Jiazhi, Wei Wei, Li Xiang

机构信息

Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.

Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.

出版信息

PLoS One. 2025 Jun 24;20(6):e0325964. doi: 10.1371/journal.pone.0325964. eCollection 2025.


DOI:10.1371/journal.pone.0325964
PMID:40554484
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12186906/
Abstract

BACKGROUND: Podoplanin (PDPN) is a membrane glycoprotein implicated in tumor invasion and immune modulation in high-grade gliomas (HGGs). However, the non-invasive prediction of PDPN expression and its prognostic significance using radiomics remains unexplored. MATERIALS AND METHODS: This study used preoperative contrast-enhanced MRI T1WI data analyzed by gradient boosting machine to predict podoplanin (PDPN) expression and overall survival (OS) in HGG patients. RESULTS: We retrospectively analyzed 89 HGG patients' clinical data, MRI images, and RNA-seq profiles from TCIA. For each patient, 107 radiomics features were extracted from HGG subregions. The radiomics prognostic model was built using two selected features, glcm_Idmn and glcn_Idn. Through validation with external the REMBRANDT dataset (n=39), the model demonstrated great predictive performance for the PDPN expression levels and OS in HGG. The area under the curve of the ROC in the radiomics signature combined with clinical risk factors for the 1-year, 2-year, and 3-year OS rates in the TCIA-HGG were 0.799, 0.883, and 0.923, respectively. Gradient boosting machine using preoperative MRI T1WI and extracted radiomics features performed well in predicting the expression of PDPN and OS in HGG. CONCLUSIONS: Radiomics features extracted from MRI images can non-invasively predict PDPN expression and prognosis in HGG, offering a potential imaging biomarker for individualized clinical management.

摘要

背景:血小板源性生长因子结合蛋白(PDPN)是一种膜糖蛋白,与高级别胶质瘤(HGG)的肿瘤侵袭和免疫调节有关。然而,利用放射组学对PDPN表达进行无创预测及其预后意义尚未得到探索。 材料与方法:本研究使用梯度提升机分析术前对比增强MRI T1WI数据,以预测HGG患者的血小板源性生长因子结合蛋白(PDPN)表达和总生存期(OS)。 结果:我们回顾性分析了来自TCIA的89例HGG患者的临床数据、MRI图像和RNA测序谱。对每位患者,从HGG亚区域提取了107个放射组学特征。使用两个选定特征(灰度共生矩阵逆差矩和灰度共生矩阵逆熵)构建了放射组学预后模型。通过使用外部REMBRANDT数据集(n = 39)进行验证,该模型在预测HGG中PDPN表达水平和OS方面表现出良好的预测性能。在TCIA-HGG中,放射组学特征联合临床危险因素对1年、2年和3年OS率的ROC曲线下面积分别为0.799、0.883和0.923。利用术前MRI T1WI和提取的放射组学特征的梯度提升机在预测HGG中PDPN表达和OS方面表现良好。 结论:从MRI图像中提取的放射组学特征可以无创地预测HGG中PDPN的表达和预后,为个体化临床管理提供了一种潜在的影像生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f9f/12186906/0e5ed299c53c/pone.0325964.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f9f/12186906/634a13937eeb/pone.0325964.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f9f/12186906/34415811acd5/pone.0325964.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f9f/12186906/fc0897f3a7b6/pone.0325964.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f9f/12186906/ac672ac8e6a8/pone.0325964.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f9f/12186906/8c7a25dd276d/pone.0325964.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f9f/12186906/f8a703dd3785/pone.0325964.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f9f/12186906/cc08d33ac369/pone.0325964.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f9f/12186906/0e5ed299c53c/pone.0325964.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f9f/12186906/634a13937eeb/pone.0325964.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f9f/12186906/34415811acd5/pone.0325964.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f9f/12186906/fc0897f3a7b6/pone.0325964.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f9f/12186906/ac672ac8e6a8/pone.0325964.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f9f/12186906/8c7a25dd276d/pone.0325964.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f9f/12186906/f8a703dd3785/pone.0325964.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f9f/12186906/cc08d33ac369/pone.0325964.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f9f/12186906/0e5ed299c53c/pone.0325964.g008.jpg

相似文献

[1]
Predicting podoplanin expression and prognostic significance in high-grade glioma based on TCGA TCIA radiomics.

PLoS One. 2025-6-24

[2]
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.

Cochrane Database Syst Rev. 2018-1-22

[3]
Survival prediction with radiomics for patients with IDH mutated lower-grade glioma.

J Neurooncol. 2025-3-18

[4]
Deep Learning and Habitat Radiomics for the Prediction of Glioma Pathology Using Multiparametric MRI: A Multicenter Study.

Acad Radiol. 2025-2

[5]
MR-Based Radiomics Predicts CDK6 Expression and Prognostic Value in High-grade Glioma.

Acad Radiol. 2024-12

[6]
Role of Amide Proton Transfer Weighted MRI in Predicting MGMTp Methylation Status, p53-Status, Ki-67 Index, IDH-Status, and ATRX Expression in WHO Grade 4 High Grade Glioma.

Tomography. 2025-5-31

[7]
From pixels to prognosis: leveraging radiomics and machine learning to predict IDH1 genotype in gliomas.

Neurosurg Rev. 2025-4-29

[8]
Development of a Radiomic-clinical Nomogram for Prediction of Survival in Patients with Nasal Extranodal Natural Killer/T-cell Lymphoma.

Curr Med Imaging. 2025-6-19

[9]
Construction of enhanced MRI-based radiomics models using machine learning algorithms for non-invasive prediction of IL7R expression in high-grade gliomas and its prognostic value in clinical practice.

J Transl Med. 2025-3-31

[10]
Intraoperative 5-ALA fluorescence-guided resection of high-grade glioma leads to greater extent of resection with better outcomes: a systematic review.

J Neurooncol. 2022-1

本文引用的文献

[1]
KEGG: biological systems database as a model of the real world.

Nucleic Acids Res. 2025-1-6

[2]
TNC upregulation promotes glioma tumourigenesis through TDG-mediated active DNA demethylation.

Cell Death Discov. 2024-8-1

[3]
Insights into the regulatory role of RNA methylation modifications in glioma.

J Transl Med. 2023-11-14

[4]
Noninvasive radiomics model reveals macrophage infiltration in glioma.

Cancer Lett. 2023-10-1

[5]
PDPN contributes to constructing immunosuppressive microenvironment in IDH wildtype glioma.

Cancer Gene Ther. 2023-2

[6]
CDC6 is a prognostic biomarker and correlated with immune infiltrates in glioma.

Mol Cancer. 2022-7-25

[7]
Treatment Response and Prognosis Evaluation in High-Grade Glioma: An Imaging Review Based on MRI.

J Magn Reson Imaging. 2022-8

[8]
Platelet CLEC2-Podoplanin Axis as a Promising Target for Oral Cancer Treatment.

Front Immunol. 2021

[9]
Representational Gradient Boosting: Backpropagation in the Space of Functions.

IEEE Trans Pattern Anal Mach Intell. 2022-12

[10]
CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018.

Neuro Oncol. 2021-10-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索