文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

常春藤皂苷元对高尿酸血症小鼠的降尿酸作用:基于分子对接和体内分析的机制洞察

Hederagenin's uric acid-lowering effects in hyperuricemic mice: Mechanistic insights from molecular docking and in vivo analysis.

作者信息

Chen Ping, Tian Ya-Ni, Wang Jing-Tao, Yin Xiang-Lin, Guan Bao-Sheng, Bai Xue

机构信息

School of Clinical Medicine, Jiamusi University, Jiamusi, China.

School of Basic Medicine, Jiamusi University, Jiamusi, China.

出版信息

PLoS One. 2025 Jun 24;20(6):e0326317. doi: 10.1371/journal.pone.0326317. eCollection 2025.


DOI:10.1371/journal.pone.0326317
PMID:40554493
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12186911/
Abstract

This study explored the uric acid-lowering effects of hederagenin (HD) through molecular docking analysis and a chronic hyperuricemia (HUA) mouse model. Molecular docking was performed to evaluate HD's interactions key urate-regulating proteins, including xanthine oxidase (XOD), ABCG2, OAT1, URAT1, and GLUT9. To establish a chronic HUA model, mice were fed a yeast-adenine diet supplemented with potassium oxonate. The mice were randomly assigned to six groups: normal control, HUA model control, benzbromarone (BEN) group, and three HD treatment groups at doses of 50, 100, and 200 mg/kg. Serum uric acid (UA) levels, liver and kidney function indicators, XOD activity, and oxidative stress markers were assessed. Histopathological analyses of the liver and kidney were also conducted. In addition, gene and protein expression levels of urate transporters and inflammatory markers were assessed using RT-PCR and Western blotting. The results showed that HD interacts with XOD and urate transporters, significantly reducing serum UA levels and inhibiting XOD activity in HUA model. It also modulated the expression of urate transporter to enhance UA excretion. Moreover, HD protected liver and kidney function by reducing pro-inflammatory cytokine levels and inhibiting the TLR4/Myd88/NF-κB and NLRP3 signaling pathways. These findings suggest HD may serve as a promising therapeutic agent for lowing uric acid and preventing organ damage associated with HUA.

摘要

本研究通过分子对接分析和慢性高尿酸血症(HUA)小鼠模型,探讨了常春藤皂苷元(HD)的降尿酸作用。进行分子对接以评估HD与关键尿酸调节蛋白的相互作用,这些蛋白包括黄嘌呤氧化酶(XOD)、ABCG2、OAT1、URAT1和GLUT9。为建立慢性HUA模型,给小鼠喂食补充了氧嗪酸钾的酵母 - 腺嘌呤饮食。将小鼠随机分为六组:正常对照组、HUA模型对照组、苯溴马隆(BEN)组以及三个剂量分别为50、100和200mg/kg的HD治疗组。评估血清尿酸(UA)水平、肝肾功能指标、XOD活性和氧化应激标志物。还对肝脏和肾脏进行了组织病理学分析。此外,使用RT-PCR和蛋白质印迹法评估尿酸转运蛋白和炎症标志物的基因和蛋白表达水平。结果表明,HD与XOD和尿酸转运蛋白相互作用,显著降低HUA模型中的血清UA水平并抑制XOD活性。它还调节尿酸转运蛋白的表达以增强UA排泄。此外,HD通过降低促炎细胞因子水平并抑制TLR4/Myd88/NF-κB和NLRP3信号通路来保护肝肾功能。这些发现表明,HD可能是一种有前景的治疗剂,可用于降低尿酸并预防与HUA相关的器官损伤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5830/12186911/67cd6a99bef3/pone.0326317.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5830/12186911/7cf85644151b/pone.0326317.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5830/12186911/141832825611/pone.0326317.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5830/12186911/7ac29e00e342/pone.0326317.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5830/12186911/c695958c9fc9/pone.0326317.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5830/12186911/cbfd2a815c33/pone.0326317.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5830/12186911/a5f4074d6f97/pone.0326317.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5830/12186911/b72b73b490d1/pone.0326317.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5830/12186911/0fd0e0b45115/pone.0326317.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5830/12186911/67cd6a99bef3/pone.0326317.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5830/12186911/7cf85644151b/pone.0326317.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5830/12186911/141832825611/pone.0326317.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5830/12186911/7ac29e00e342/pone.0326317.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5830/12186911/c695958c9fc9/pone.0326317.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5830/12186911/cbfd2a815c33/pone.0326317.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5830/12186911/a5f4074d6f97/pone.0326317.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5830/12186911/b72b73b490d1/pone.0326317.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5830/12186911/0fd0e0b45115/pone.0326317.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5830/12186911/67cd6a99bef3/pone.0326317.g009.jpg

相似文献

[1]
Hederagenin's uric acid-lowering effects in hyperuricemic mice: Mechanistic insights from molecular docking and in vivo analysis.

PLoS One. 2025-6-24

[2]
The impact of chrysanthemi indici flos-enriched flavonoid part on the model of hyperuricemia based on inhibiting synthesis and promoting excretion of uric acid.

J Ethnopharmacol. 2024-10-28

[3]
Anti-hyperuricemic effects of the seeds of Hovenia acerba in hyperuricemia mice.

J Ethnopharmacol. 2025-1-31

[4]
Ilex cornuta leaves extracts ameliorate hyperuricemia by modulating uric acid transporters.

J Ethnopharmacol. 2025-1-10

[5]
Berberrubine attenuates potassium oxonate- and hypoxanthine-induced hyperuricemia by regulating urate transporters and JAK2/STAT3 signaling pathway.

Eur J Pharmacol. 2021-12-5

[6]
9-Hydroxy-8-oxypalmatine, a novel liver-mediated oxymetabolite of palmatine, alleviates hyperuricemia and kidney inflammation in hyperuricemic mice.

J Ethnopharmacol. 2024-12-5

[7]
Paeonia × suffruticosa Andrews leaf extract and its main component apigenin 7-O-glucoside ameliorate hyperuricemia by inhibiting xanthine oxidase activity and regulating renal urate transporters.

Phytomedicine. 2023-9

[8]
Network pharmacology and experimental validation reveal mechanisms of Ilicis Cornutae Folium water extract in treating hyperuricemia.

J Ethnopharmacol. 2025-7-24

[9]
Phyllanthi Fructus ameliorates hyperuricemia and kidney injure via inhibiting uric acid synthesis, modulating urate transporters, and alleviating inflammation.

Sci Rep. 2024-11-11

[10]
Dihydromyricetin ameliorates hyperuricemia through inhibiting uric acid reabsorption.

J Sci Food Agric. 2025-6

本文引用的文献

[1]
Histomorphometric Study of the Tunics of Ductus Arteriosus in Human Fetal Cadavers Using the ImageJ Software.

Cureus. 2024-7-9

[2]
An updated review of the pharmacological effects and potential mechanisms of hederagenin and its derivatives.

Front Pharmacol. 2024-6-19

[3]
Design and synthesis of hederagenin derivatives modulating STING/NF-κB signaling for the relief of acute liver injury in septic mice.

Eur J Med Chem. 2023-1-5

[4]
Current knowledge and development of hederagenin as a promising medicinal agent: a comprehensive review.

RSC Adv. 2018-7-3

[5]
The protective effect of hederagenin on renal fibrosis by targeting muscarinic acetylcholine receptor.

Bioengineered. 2022-4

[6]
Suppression of NOD-like receptor protein 3 inflammasome activation and macrophage M1 polarization by hederagenin contributes to attenuation of sepsis-induced acute lung injury in rats.

Bioengineered. 2022-3

[7]
Hederagenin Protects PC12 Cells Against Corticosterone-Induced Injury by the Activation of the PI3K/AKT Pathway.

Front Pharmacol. 2021-10-14

[8]
Serum uric acid and risk of incident chronic kidney disease: a national cohort study and updated meta-analysis.

Nutr Metab (Lond). 2021-10-19

[9]
Molecular Biological and Clinical Understanding of the Pathophysiology and Treatments of Hyperuricemia and Its Association with Metabolic Syndrome, Cardiovascular Diseases and Chronic Kidney Disease.

Int J Mol Sci. 2021-8-26

[10]
Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease.

Eur J Intern Med. 2020-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索