Suppr超能文献

一种通过机器学习和主成分分析开发的模型,用于预测中国血液系统恶性肿瘤患者异基因造血干细胞移植后闭塞性细支气管炎综合征。

A model developed by machine learning and principal component analysis for predicting bronchiolitis obliterans syndrome after allogeneic HSCT in a Chinese population with hematologic malignancies.

作者信息

Chen Jia, Yang Lingyi, Liu Chao, Bai Lian, Li Xiaoli, Chen Jun, Zhang Yanming, Xu Yang, Fan Yi, Tu Yuqing, Xu Mimi, Li Lingfeng, Xu Jiming, Zhu Yehan, Wang Yao, Chen Feng, Wu Depei

机构信息

National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu Province, 215006, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu Province, 215123, China.

Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.

出版信息

Comput Biol Med. 2025 Sep;195:110562. doi: 10.1016/j.compbiomed.2025.110562. Epub 2025 Jun 23.

Abstract

Bronchiolitis obliterans syndrome (BOS) is a severe pulmonary complication following allogeneic hematopoietic stem cell transplantation (allo-HSCT), with early prediction being crucial. While pulmonary function tests (PFTs) are fundamental for BOS assessment, the predictive value of pretransplant PFT results remains uncertain. In this study involving allo-HSCT recipients with hematologic malignancies who survived over 100 days post-HSCT, we aimed to determine the predictive significance of pretransplant PFTs for BOS. Data from 742 eligible patients were randomly divided into training and validation cohorts, and machine learning algorithms were employed for feature engineering, feature selection, and modeling. Principal component analysis (PCA) was utilized to reduce the dimensionality of PFT parameters. Over a median follow-up of 573.5 days, 57 patients developed BOS, with a median interval of 269 days from transplantation to BOS onset. Our multivariate logistic regression (MLR) model, incorporating the first principal components of PCA-treated PFT results along with age, sex, and previous nonpulmonary chronic graft-versus-host disease (GvHD), demonstrated discriminant AUC values of 0.671 (95 % CI, 0.522-0.820) and 0.669 (95 % CI, 0.588-0.751) in the validation and training sets, respectively. Pretransplant PFT results emerged as pivotal in predicting BOS risk post-allo-HSCT. The MLR model, developed through data-driven machine learning, effectively identifies high-risk BOS populations at an early stage.

摘要

闭塞性细支气管炎综合征(BOS)是异基因造血干细胞移植(allo-HSCT)后的一种严重肺部并发症,早期预测至关重要。虽然肺功能测试(PFTs)是BOS评估的基础,但移植前PFT结果的预测价值仍不确定。在这项针对HSCT后存活超过100天的血液系统恶性肿瘤allo-HSCT受者的研究中,我们旨在确定移植前PFTs对BOS的预测意义。来自742名符合条件患者的数据被随机分为训练组和验证组,并采用机器学习算法进行特征工程、特征选择和建模。主成分分析(PCA)用于降低PFT参数的维度。在中位随访573.5天期间,57名患者发生了BOS,从移植到BOS发病的中位间隔为269天。我们的多变量逻辑回归(MLR)模型纳入了经PCA处理的PFT结果的第一主成分以及年龄、性别和既往非肺部慢性移植物抗宿主病(GvHD),在验证组和训练组中的判别AUC值分别为0.671(95%CI,0.522-0.820)和0.669(95%CI,0.588-0.751)。移植前PFT结果在预测allo-HSCT后BOS风险方面至关重要。通过数据驱动的机器学习开发的MLR模型能够在早期有效识别BOS高危人群。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验